The Global Pandemic Mortality Burden project (GLaMOR)

GLaMOR Core Team:

NIVEL, Utrecht, The Netherlands: Madelon Kroneman, John Paget, Francois Schellevis, Peter Spreeuwenberg

George Washington University, Washington DC, USA: Lone Simonsen

Sage Analytica, Bethesda, MD, USA: Roger Lustig, Robert Taylor

Royal College of GPs, Birmingham, UK: Douglas Fleming

WHO: Maria Van Kerkhove and Anthony Mounts

NIVEL Contract with WHO-Geneva 2011
GlaMOR Objective

To estimate the global mortality burden of the 2009 influenza pandemic
- Based on statistical attributions derived from multiple regression models applied to mortality data from 2009 and prior years
Background

- WHO’s global seasonal influenza mortality estimate: **250,000-500,000 deaths per annum**
- There were 18,209 lab-confirmed pandemic deaths reported to WHO (25 June 2011)
 - severely underestimated burden
- CDC is also working on a global 2009 estimate (using a probabilistic modeling approach)
- GLaMOR started July 2011 – report to WHO August 2012
- A WHO Pandemic Advisory Committee is supporting the work of the GLaMOR project
The GLaMOR Strategy

- Use multiple regression modeling to estimate pandemic mortality in ~20 collaborating countries
 - Weekly mortality and virology data
- Use extrapolation methods to project those single-country results to rest of the world
 - Based on GDP, pop structure, co-morbidities, access to care, more
- Strategy inspired by Murray et al (Lancet’ 06)
 - Estimated the global 1918 pandemic mortality from annual mortality data

Stage 1
- Raw mortality and virology time series
- Stage 1
- ~20 single-country pandemic mortality estimates
- Stage 2
- Global pandemic mortality estimates
Stage 1: Data requirements

- Weekly Time Series for 2005-2009 or longer
- Mortality Data
 - 6 age groups
 - <5, 5-14, 15-44, 45-64, 65-84, 85+
 - Primary analysis breakdown: <>65
 - Underlying Cause (ICD-10 codes)
 - All-cause, cardio-respiratory, respiratory, pneumonia & influenza
 - Mexico supplied “accidents” – a control outcome
- Virology Data
 - Ideally nationally representative, fully subtyped, and RSV
 - We used FluNET-WHO data
 - Influenza virology by type, sub-type (No RSV)
 - A few countries supplied more detailed virology data
- Population data
 - US census bureau international database
GlaMOR Collaborating Countries

19% of world population

Countries collaborating with GlaMOR Stage 1
GlaMOR Collaborating Countries: WHO Euro area

France, Germany, Spain, the Netherlands, Poland, Romania, Slovenia, United Kingdom, Israel, Denmark (all-cause only)

67% EU/EEA pop
38% WHO Region pop

Thank you for this great collaboration
Different types of mortality data

- **All-cause deaths**
 - More likely to be available
 - More sensitive (captures more deaths)
 - Less specific (more related to influenza)

- **Respiratory & Cardiovascular deaths**
 - all “I” and “J” codes
 - Intermediate sensitivity and specificity
 - commonly used to estimate influenza burden

- **Respiratory deaths**
 - all “J” codes
 - Less sensitive (captures fewer deaths)
 - More specific (more related to influenza)

- **Pneumonia and Influenza deaths**
Mild impact country: Mortality Data Time Series
Country X: All 4 causes, <65 years, log scale

Diagram showing mortality data trends over time for all causes, respiratory & cardio causes, respiratory causes, and flu & pneumonia causes. The data is presented on a log scale from 1998 to 2010.
High impact country: Mortality Data Time Series
Country Y: All 4 causes plus diabetes, <65 years, log scale
Mild impact country - Stage 1 Model Results
Age <65years and Outcome=Respiratory, country X
Model nicely captures mortality increase during pandemic wave

R² = 0.84
Pandemic term: p < .0001
High impact country - Stage 1 Model Results

Age=<65 and Outcome=Respiratory, country Y
Pandemic period elevation similar to seasonal 2003 peak levels

R²= 0.86
Pandemic term:
p < .0001
Mild Impact Pandemic Mortality for <65 years, by cause, numbers with 95%CI

<table>
<thead>
<tr>
<th>Age group: <65 years</th>
<th>Number of pandemic deaths</th>
<th>Lower 95%</th>
<th>Upper 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-Cause</td>
<td>348</td>
<td>50</td>
<td>646</td>
</tr>
<tr>
<td>Resp & Cardio</td>
<td>223</td>
<td>71</td>
<td>375</td>
</tr>
<tr>
<td>Respiratory</td>
<td>152</td>
<td>97</td>
<td>207</td>
</tr>
<tr>
<td>Pneu & Influ</td>
<td>108</td>
<td>83</td>
<td>133</td>
</tr>
</tbody>
</table>
Mild Impact country 2 Pandemic Mortality for <65 years, by cause, numbers with 95%CI

<table>
<thead>
<tr>
<th>Age group: <65 years</th>
<th>Point estimate</th>
<th>Confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-Cause</td>
<td>-335</td>
<td>-638 -32</td>
</tr>
<tr>
<td>(Adj R²=.65; p=0.03)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resp & Cardio</td>
<td>206</td>
<td>148 264</td>
</tr>
<tr>
<td>(Adj R²=.76; p=0.0001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory</td>
<td>138</td>
<td>99 177</td>
</tr>
<tr>
<td>(Adj R²=.79; p<0.0001)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Low sensitivity combined with low burden produces significant negative pandemic excess mortality in this country for All-Cause. A good argument for modeling a more specific outcome like the lower two, and with tighter 95% CIs.

In high impact country Y - all-cause term highly significant with high $R^2 (0.85)$.
Importance of having good virological data

Virology Data
- Ideally nationally representative, fully subtyped, and RSV
- We used
 - Influenza virology by type, sub-type (no RSV)

FluNET-WHO data has been a fantastic resource
- we have been able to concentrate our efforts on the mortality data and data analysis

For Europe, we noticed some data gaps in FluNet
- In those cases we asked countries to provide their national data
Stage 2: Four distinct strategies

1. Survey sampling (simple projection)
2. Matching (theory-based relations)
3. Multiple Imputation (statistical relations)
Example of Stage 2 Modeled Global Burden pattern

darker color = higher 2009 pandemic mortality rate
Summary: Stage 2

Choice of extrapolation method
- Drop survey method: too simplistic
- “Matching” and “imputation” produce different patterns even when using the same factors
- Initial runs indicate Murray et al. method gives very high estimates (as GDP based)

Final GLaMOR estimates will be based on Respiratory deaths as a confident minimum burden estimate
- Confidence on parameter estimates better
- All-cause and Cardio-Respiratory estimates higher than Respiratory in hardest hit countries, but for countries with low burden, respiratory [and Cardio-resp] is higher
New initiatives for the Glamor Euro network

WHO Euro project: country specific 2009 pandemic mortality estimates

- GLaMOR will only publish Regional estimates
- Publication of country-specific mortality estimates for the WHO Euro Region
- We would like to include some more countries (Russia?)
- We would like to produce more detailed estimates (e.g. more age groups)
- We would be able to produce more accurate estimates as the Stage II procedure will be based on WHO Euro countries (53 countries). This would exclude global outliers (e.g. Americas)
New global initiatives

- **Global mortality impact for 2010 pandemic**
 - Repeat analysis for 2010 and obtain more complete picture of global pandemic impact (2009 and 2010)

- **Global mortality impact of seasonal influenza**
 - Estimate mortality impact of seasonal influenza (based on data for previous ten seasons)
 - Validation of WHO’s global seasonal mortality estimate of 250,000-500,000 deaths per annum
Acknowledgments -- Country Collaborators

- **Australia**
 David Muscatello, Raina MacEntyre, Dominic Dwyer

- **Argentina**
 Horacio Echenique, Vilma Savy, Luis Carlino

- **Brazil**
 Wladimir Alonso, Cynthia Schuck, Fernanda Edna Araujo Moura, Terezinha Maria de Paiva, Marcia Lopes de Carvalho

- **Canada**
 Dena Schanzer

- **Chile**
 Rodrigo Fuentes, Andrea Olea, Viviana Sotomayor, Fatima Marinho de Souza

- **Denmark**
 Jens Nielsen, Kåre Mølbak

- **Germany**
 Udo Buchholz, Brunhilde Schweiger

- **France**
 Magali Lemaitre, Fabrice Carrat, Bruno Lina, Sylvie van der Werf

- **Hong Kong**
 Ben Cowling, Gabriel Leung

- **Israel**
 Michal Bromberg, Zalman Kaufman, Tamar Shohat, Rita Dichtiar, Yair Amikam

- **Japan**
 Norio Sugaya, Shuichiro Hayashi, Megumi Matsuda

- **Mexico**
 Hugo Lopez-Gatell-Ramirez, Celia Mercedes Alpuche Aranda, Daniel Ernesto Noyola Cherpitel

- **Netherlands**
 Adam Meijer, Kees Van den Wijngaard, Marianne van der Sande, Liselotte Van Asten, Mirjam Kretzschmar

- **New Zealand**
 Michael Baker

- **Romania**
 Laurentiu Zolotusca, Adriana Pistol, Florin Popovici, Odette Nicolae, Rodica Popescu
Acknowledgments -- Country Collaborators

Poland
Bogdan Wojtyniak and Daniel Rabczenko

Singapore
Li Wei Ang, Mark Chen, Jeffery Cutter, Vernon Lee, Raymond Lin

Slovenia
Maja Socan and Katarina Prosenc

Spain
Amparo Larrauri Cámara, Salvador de Mateo and colleagues

South Korea
Un-Yeong Go, Yeonkyeng Lee

South Africa
Cheryl Cohen

United Kingdom
Richard Peabody, Helen Green

USA
David Shay, Joseph Breese, Cecile Viboud
Acknowledgments -- Other Collaborators

- **Fogarty International Center**
 - Cecile Viboud
 - Vivek Charu
 - Gerardo Chowell
 - Mark Miller

- **EuroMoMo**
 - Kåre Mølbak
 - Anne Mazick

- **WHO Geneva**
 - Julia Fitzner

- **WHO Euro, Copenhagen**
 - Caroline Brown
 - Pernille Jorgensen

- **ECDC**
 - Angus Nicoll
Thank you for your attention
Extras
Lab-confirmed H1N1 pandemic deaths reported to WHO

<table>
<thead>
<tr>
<th>Region</th>
<th>Deaths*</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHO Regional Office for Africa (AFRO) ***</td>
<td>168</td>
</tr>
<tr>
<td>WHO Regional Office for the Americas (AMRO)</td>
<td>At least 8450</td>
</tr>
<tr>
<td>WHO Regional Office for the Eastern Mediterranean (EMRO) **</td>
<td>1019</td>
</tr>
<tr>
<td>WHO Regional Office for Europe (EURO)</td>
<td>At least 4879</td>
</tr>
<tr>
<td>WHO Regional Office for South-East Asia (SEARO)</td>
<td>1852</td>
</tr>
<tr>
<td>WHO Regional Office for the Western Pacific (WPRO)</td>
<td>1841</td>
</tr>
<tr>
<td>Total*</td>
<td>At least 18209</td>
</tr>
</tbody>
</table>

*The reported number of fatal cases is an under representation of the actual numbers as many deaths are never tested or recognized as influenza related.

**No update since 7 March 2010

***No update since 23 May 2010

Pros and Cons of GLaMOR approach

Pros
- Based on actual mortality data
- Comparable between countries (same model, outcomes)
- Comparable to historic pandemic burden estimates
- Comparable to seasonal burden estimates

Cons
- Need up-to-date weekly mortality data
- Need up-to-date weekly virology data
 - Especially for tropics, sub-tropics, and for 2010-11 due to H1N1 co-circulation with A/H3 and B
 - RSV lab data (or proxy) needed to control for RSV mortality burden
- Must project an ~25 country convenience sample to 170 countries around the world.
Model Form

Multiple regression (additive model)

\[\text{Outcome}_t = \beta_1 t + \beta_2 t^2 + \beta_3 t^3 + \beta_{4-5} \sin(2\pi t/w) + \beta_{6-7} \cos(2\pi t/w) + \beta_7 \text{FluA}_t + \beta_8 \text{FluB}_t + (\beta_{10} \text{RSV}_t) \]

FluA dummy variables,
For each season

This \(\beta_x \text{FluA}_t \) for 2009 yields the pandemic influenza attribution

Pandemic Excess Mortality=

\[= \sum \beta_x \text{FluA}_t \]

for pandemic period, Apr1 to Dec31 2009

Deaths/100,000 pop
\(t = \) running week number

\(\sin, \cos \) terms for \(\frac{1}{2} \) and 1 year cycles

Virology data = numbers (not %)

Dropped RSV Term due to lack of Virology data

Dropped log link SAS Proc Reg

Sin, cos terms for 1/2 and 1 year cycles

Virology data = numbers (not %)
Stage 1 Model Fit

and contribution of influenza terms in model (lift)

Lift Table, expanded age groups, all outcomes

<table>
<thead>
<tr>
<th>Outcome</th>
<th>No age grouping</th>
<th>0 to 4 years</th>
<th>5 to 14 years</th>
<th>15 to 44 years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base Rsq</td>
<td>Model Rsq</td>
<td>Lift</td>
<td>F-prob</td>
</tr>
<tr>
<td>All causes</td>
<td>0.7704</td>
<td>0.8325</td>
<td>0.0622</td>
<td>0.9993</td>
</tr>
<tr>
<td>Diabetes</td>
<td>0.8229</td>
<td>0.8676</td>
<td>0.0446</td>
<td>0.9983</td>
</tr>
<tr>
<td>Flu & Pneumonia</td>
<td>0.6630</td>
<td>0.8338</td>
<td>0.1708</td>
<td>1.0000</td>
</tr>
<tr>
<td>Resp. & Cardio.</td>
<td>0.8030</td>
<td>0.8650</td>
<td>0.0620</td>
<td>0.9999</td>
</tr>
<tr>
<td>Respiratory</td>
<td>0.7444</td>
<td>0.8466</td>
<td>0.1022</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outcome</th>
<th>45 to 64 years</th>
<th>65 to 84 years</th>
<th>85 years or more</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base Rsq</td>
<td>Model Rsq</td>
<td>Lift</td>
</tr>
<tr>
<td>All causes</td>
<td>0.7232</td>
<td>0.7939</td>
<td>0.0707</td>
</tr>
<tr>
<td>Diabetes</td>
<td>0.7981</td>
<td>0.8400</td>
<td>0.0419</td>
</tr>
<tr>
<td>Flu & Pneumonia</td>
<td>0.3870</td>
<td>0.7820</td>
<td>0.3951</td>
</tr>
<tr>
<td>Resp. & Cardio.</td>
<td>0.7101</td>
<td>0.8166</td>
<td>0.1065</td>
</tr>
<tr>
<td>Respiratory</td>
<td>0.5426</td>
<td>0.7948</td>
<td>0.2512</td>
</tr>
</tbody>
</table>

Model also fits well for all age groups, except for diabetes outcomes, with a strong “lift” for respiratory outcomes in age groups 5-64
<table>
<thead>
<tr>
<th>Variable</th>
<th>DF</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
<th>t Value</th>
<th>Pr ></th>
<th>t</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>cos12</td>
<td>1</td>
<td>0.43480</td>
<td>0.01206</td>
<td>36.06</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sin6</td>
<td>1</td>
<td>0.00798</td>
<td>0.01056</td>
<td>0.76</td>
<td>0.4502</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cos6</td>
<td>1</td>
<td>0.13993</td>
<td>0.01080</td>
<td>12.95</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_bl_s</td>
<td>1</td>
<td>-0.00472</td>
<td>0.00210</td>
<td>-2.25</td>
<td>0.0248</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_a_nonpan_y_1_3</td>
<td>1</td>
<td>-0.01253</td>
<td>0.01156</td>
<td>-1.08</td>
<td>0.2789</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_a_nonpan_y_1_4</td>
<td>1</td>
<td>0.06152</td>
<td>0.01129</td>
<td>5.45</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_a_nonpan_y_1_5</td>
<td>1</td>
<td>-0.01088</td>
<td>0.00563</td>
<td>-1.93</td>
<td>0.0539</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_a_nonpan_y_1_6</td>
<td>1</td>
<td>0.01508</td>
<td>0.00186</td>
<td>8.11</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_a_nonpan_y_1_7</td>
<td>1</td>
<td>0.00422</td>
<td>0.01902</td>
<td>0.22</td>
<td>0.8245</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_a_nonpan_y_1_8</td>
<td>1</td>
<td>-0.00082099</td>
<td>0.00226</td>
<td>-0.36</td>
<td>0.7171</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_a_nonpan_y_1_9</td>
<td>1</td>
<td>0.00427</td>
<td>0.00417</td>
<td>1.03</td>
<td>0.3056</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_a_nonpan_y_1_10</td>
<td>1</td>
<td>-0.00847</td>
<td>0.00278</td>
<td>-3.04</td>
<td>0.0025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_a_nonpan_y_1_11</td>
<td>1</td>
<td>0.00084623</td>
<td>0.00094271</td>
<td>0.90</td>
<td>0.3698</td>
<td></td>
<td></td>
</tr>
<tr>
<td>z_hipan_y_1</td>
<td>1</td>
<td>0.0030617</td>
<td>0.00001418</td>
<td>21.59</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example of model output

Agegrp: Under 65 years

Outcome: Respiratory

Model Adj R2=.85

Pandemic Flu Term significant (p<0.0001)