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Executive summary  
Sample size calculation is an essential step in ensuring that analysis of the data which are collected through 
surveillance systems can support the desired public health objective(s). The main aim of sample size calculations is to 
determine the sample size needed from the population under study to possibly detect a statistically significant result. 

This document provides guidance to support disease experts in doing sample size calculations according to 
different surveillance objectives. Its main aims are to: 

• introduce the statistical terminology and key concepts used in relation to sample size and power 
calculations; 

• provide guidance for doing sample size calculations for typical situations that involve the methods most 
frequently used in surveillance analyses; 

• illustrate these calculations with examples and easy-to-use R scripts. 

This document is organised as follows: Section 1 presents an overall introduction to sample size calculations for 
surveillance data and a list of objectives for this guidance. Section 2 enumerates the key statistical concepts and 
definitions used in sample size calculation and provides illustrative examples drawn from different sample size 
requirement situations, which are mostly relevant in the context of ECDC. Section 3 presents sample size 
calculations for surveys using simple random sampling, where formulae are provided according to the different 
situations being considered. Each outcome is illustrated with a scenario, along with the provision and explanation 
of R codes to obtain the required sample size. Most computations are done with available R packages.  
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1 Introduction  
A series of scientific guidances on statistical methods is published by ECDC to address the needs of surveillance 
experts and increase biostatistical capacity. Sample size calculation is an essential step in ensuring that analysis of 
the data which are collected through surveillance systems can support the desired public health objective(s). The 
main aim of sample size calculations is to determine the sample size needed from the population under study to 
possibly detect a statistically significant result. 

This document provides guidance to support disease experts in doing sample size calculations according to 
different surveillance objectives. It provides a practical overview of sample size calculation methods for 
different statistical analyses, illustrated with examples from infectious disease surveillance settings. It also 
provides a hands-on step-by-step guidance on how sample size calculations are obtained, with code snippets 
throughout the document.  

1.1 Objectives  
The objectives of this guidance for sample size calculations for surveillance data are:  

• to introduce the statistical terminology and key concepts used in relation to sample size and power calculations;  
• to provide guidance for doing sample size calculations for typical situations that involve the methods most 

frequently used in surveillance analyses;  
• to illustrate these calculations with examples and easy-to-use R scripts (a free software environment for 

statistical computing and graphics). 

1.2 Structure of the document  
This document is organised as follows: Section 1 presents an overall introduction to sample size calculations for 
surveillance data and a list of objectives for this guidance. Section 2 enumerates the key statistical concepts and 
definitions used in sample size calculation, such as sampling methods, hypothesis testing, confidence intervals, 
types of outcome variables, representativeness,  power, and level of significance. It also provides illustrative 
examples drawn from different sample size requirement situations, which are mostly relevant in the context of 
ECDC. This includes typical sample size calculations when the outcome under study is either a binary outcome, a 
non-binary categorical outcome, or a continuous outcome.   

Sample size calculations for surveys using simple random sampling are presented in Section 3, where formulae are 
provided according to the different situations being considered. The situations range from obtaining the sample 
size for the estimation of a population proportion with a prespecified level of precision, to the sample size for the 
comparison of two population means. In addition, sample size calculations for categorical non-binary outcome and 
continuous outcome are also discussed in Section 3. Each outcome is illustrated with a scenario, along with the 
provision and explanation of R codes to obtain the required sample size.  

The same structure is followed for each section:  

• First, the scenario used for the specific sample size calculation is introduced (‘Scenarios 1, 2, 3 and 4’);  
• Then, the theoretical background and the formula behind the calculations are provided (‘Theoretical 

background’);  
• The scenario and the theoretical background are used to illustrate the sample size calculation in R software 

(‘Implementation of the scenario in R’);   
• Lastly, a conclusion is formulated based on the R output, and some remarks are provided for the sample 

size calculation (‘Conclusion’). 

Most computations are done with available R packages. A step-by-step guide to download and install R can be 
found here. To install R packages not included with the R installation, the ‘install.packages’ function can be 
used. The code in the following page will install and load the necessary packages and source files. 

  

https://rstudio-education.github.io/hopr/starting.html
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R code for installing necessary R packages 
## Installing R packages - done only once. 
install.packages("epiR") 
install.packages("pwr") 
install.packages("TrialSize") 
 
 
## Loading R packages - each time a new session in R is started 
library(epiR) 
library(pwr) 
library(TrialSize) 
 
# function to correct for finite sample size (see Section 8) 
source("finite_correct.R") 
 
# function to compute sample size for testing 
# difference in two dependent proportions (see Section 8) 
source("mcnemar.R") 

 

Key concepts for cluster sampling and clusters of equal and unequal sizes are discussed in Section 4. Section 5 
covers a few other issues such as types of bias, missingness and weighting.  
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2 Concepts and definitions used in the 
guidance document  
2.1 General background   
Sampling is the process of selecting a specific part (called ‘sample’) of a given target population. The ultimate goal 
is to obtain a sample that closely represents an approximation of the characteristics of the target population, in 
order to draw valid inferences. Such a sample size is defined as ‘representative’ of the target population.  

The sample should be selected using appropriate methods. In addition to choosing a suitable sampling method, the 
sample size is also vital as it directly influences both the level of precision of the findings and the cost of the study.  

The sample size should be determined based on several considerations, such as the statistical test that will be 
used, the variability in the parameter, the study design, the precision of the estimates, etc. A sample size that is 
too small will result in a lack of precision and is more likely to have random errors, leading to misleading results. A 
sample size that is too large on the other hand, will be too time- and resource-consuming. Moreover, a very large 
sample size will demonstrate statistical significance even for very small differences which may not be of importance 
to public health.  

The appropriate sample size depends on different factors, such as the surveillance goals, the type of outcome 
being investigated, and the expected results. Therefore, three aspects need to be considered before determining 
the size of a sample.  

The first consideration is the goal of the surveillance activity, which needs to be clearly specified before a sample 
size calculation can be conducted. Surveillance activities that need a sample size calculation include:  

• the estimation of a parameter with a desired precision (e.g. the estimation of disease prevalence or the 
estimation of diagnostic accuracy);   

• the comparison of a parameter versus a hypothesised value (e.g. testing if the disease proportion is 
significantly different than the hypothesised value);  

• the comparison of two population parameters, i.e. hypothesis testing (e.g. comparison of the accuracy of 
diagnostic tests, or comparison of disease prevalence at different time points). 

The second consideration is the type of outcome being investigated, since this affects the statistical data analysis 
and equivalently the sample size calculation method.  

There are three common categories of outcomes:  

• continuous (e.g. a test result taking many possible values, such as blood pressure);  
• binary (e.g. disease or vaccination status with two possible values: ‘yes’ or ‘no’); 
• categorical variables, which are of two types:  

− ordinal categorical variable (e.g. the disease stage of ovarian cancer, which takes multiple possible 
values with an intrinsic ordering – stage I up to IV);  

− nominal categorical variable (e.g. genotype (AA, Aa, aa), where there is no intrinsic ordering to the 
categories).  

The third consideration is about the expected results. Sample size calculations for binary outcomes require 
information about the expected prevalence of the outcome. For continuous outcomes, the expected average value 
and variability of the outcome need to be considered, while the minimum relevant detectable difference must be 
decided for the comparison of outcomes. For other aspects related to the design of surveillance systems, an 
estimate of the intra-cluster correlation coefficient, etc might be needed. The investigator needs to make 
assumptions on these parameters before conducting the survey. Therefore, these pieces of information have to be 
obtained from expert knowledge, prior to available information, or from a pilot study.  

The following sections introduce some of the most commonly used concepts and definitions of relevance to sample 
size calculations, such as sampling size, sampling methods, hypothesis testing, confidence intervals, types of 
outcome variable, and effect size.   

2.1.1 Population and sample  
A sample from the target population is often taken by selecting units from the sampling frame using a specific 
sampling process. 

In any surveillance study, the target and study population need to be defined. The target population is the 
population being investigated. The study population is the population from which data can actually be collected [1].  
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Ideally, the study and target population are the same, but often they are not. For example, consider a national 
health interview survey where the target population is the non-institutionalised civilian population residing in the 
country at the time of the interview. This includes residents of households and non-institutional group quarters 
(e.g. homeless shelters, rooming houses, and group homes). For the interview, the residents will be contacted via 
their home address. As a consequence of the contacting process, the study population will only include individuals 
who have a fixed household address.   

A population is said to be finite if the number of units can be counted. On the other hand, if the total population is 
unknown and/or large, it is called an infinite population. The sample size is usually larger when sampling units are 
drawn from an infinite population, as compared to a finite population. This will be demonstrated in the sample size 
calculations in Section 3. 

The sampling units are the building blocks of the population. These are the units that can be identified prior to 
the drawing of the sample, and subsequently can be selected for a sample. The sampling units can be the 
individuals in the study population, clusters of individuals such as households, or other pre-defined building blocks. 
For instance, individuals might be the intended focus group, but if only home addresses are accessible and a list of 
all individuals is not available, one can use the households as the (primary) sampling units, instead of the 
individuals. So, eventually, sampling units can be individuals (e.g. patients suffering from a disease), places (e.g. 
geographical areas such as countries), clusters (e.g. laboratories), or even objects (e.g. medical records) [2]. 

A sampling frame is then obtained from the study population. It is a ‘list’ containing all the units that have a non-
zero probability of being selected. For example, a city residential directory is used as a sampling frame for a study 
or survey in which the sampling units are the residents of that city [3]. 

2.1.2 Sampling methods  
A sampling method refers to the method in which sampling units are selected from the study population. Some 
common sampling methods in surveillance studies include simple random sampling, stratified sampling, clustered 
sampling, and multi-stage sampling. 
Simple random sampling is a sampling method in which each unit in the study population has an equal, non-
zero probability of being selected to participate in the study or survey. The method provides unbiased estimates if 
the population is homogeneous. 

On the other hand, if the population is heterogeneous, i.e. the population consists of different subgroups within 
which the outcome is believed to be different, stratified sampling is a useful sampling method. In stratified 
sampling, the population is first divided into subgroups, also called strata. Then the units are randomly sampled 
from within each of these strata according to a chosen probability sampling method (e.g. simple random sampling 
within each stratum). The sample size can be assumed to vary or be the same in each stratum. When the sample 
size in each stratum varies according to the relative importance of the respective stratum in the population, it is 
called proportionate sampling. If the sample size in each stratum is not proportional to the size of that stratum 
in the population, it is called disproportionate sampling. For example, a region-based stratified sampling 
process can be used to estimate the prevalence of hepatitis C virus (HCV)  in a given country. In this case, the 
strata are the regions of the country, and the samples are taken randomly from within each region. Using stratified 
sampling, every region is ensured to be represented in the sample. Consequently, estimates will be more precise.  

In cluster sampling, units are grouped into larger units with homogeneous characteristics. These larger units are 
called clusters, and a random sample of these clusters is selected. All the units in the selected clusters are included 
in the sample. Clusters are often natural groupings in the population, such as households, cities, or hospitals, 
within which the outcome is often more homogeneous as compared to the population as a whole. For example, 
suppose that, in order to estimate the proportion of individuals with an influenza infection in the past, a sample of 
clinics is selected randomly. All patients of the sample clinics are included in the survey.  An advantage of cluster 
sampling as compared to simple random sampling and stratified sampling is that it is often more time- and cost-
efficient. However, note that samples from the same cluster (clinic, in the previous example) tend to be correlated. 
The correlation between pairs of elements in the same clusters is called intra-cluster correlation (ICC). 

Rather than collecting all units from the selected clusters, multi-stage sampling can be used to randomly select 
units from the selected clusters. Multi-stage sampling is a sampling process done in more than one step (or stage), 
with a different sampling frame used in each step. For instance, to estimate the proportion of individuals with an 
influenza infection in the past, a two-stage sampling process can be used. The clinics are selected in the first 
stage, and sample patients are chosen (ideally in a random manner) from each selected clinic in the second stage. 
The units from the first and second stages of a multi-stage sampling are called primary and secondary 
sampling units, respectively. 
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2.1.3 Hypothesis testing  
Several of the sample size calculations correspond to situations where the aim is hypothesis testing. Therefore, 
brief descriptions of some key concepts and frequently used terminologies pertinent to hypothesis testing are 
provided here. Most of the terminologies and concepts are discussed in more details in the later sections.  

Hypothesis testing is a statistical tool proposed by Neyman and Pearson [4]. It is used to decide whether or not the 
data support a particular hypothesis. First, the null hypothesis (denoted as H0) is formulated. For a two-sample 
situation, this hypothesis implies no difference between a specified parameter of the two populations (for example, 
two means or two population proportions). Then, the alternative hypothesis (denoted as H1) is defined, which 
is the opposite of the null hypothesis (in this case, it would be that the two means or the two population 
proportions are different).  

In hypothesis testing, the objective is to specifically determine whether or not there is enough evidence to reject 
the null hypothesis. If the null hypothesis is rejected, the conclusion is that the alternative hypothesis is true. If the 
null hypothesis cannot be rejected, it may be true or there might not be enough data to be able to detect that the 
null hypothesis is false.  

Consider this as a first example: an investigator states as null hypothesis H0 that the global prevalence of hepatitis 
C virus (HCV) is 2.5%. The alternative hypothesis H1 can be that the investigator expects that the global 
prevalence of HCV is different from 2.5%. After setting up these hypotheses, the aim of hypothesis testing is to see 
if there is enough evidence to reject the null hypothesis. This is an example of a one-sample test, namely the 
hypothesis test of a population proportion against a pre-defined value. 

Now consider this as a second example: an investigator states as null hypothesis H0 that the global prevalence of 
HCV is the same in injecting drug users and non-drug users. The alternative hypothesis H1 can be that the 
investigator expects that the global prevalence of HCV is greater among injecting drug users compared to non-drug 
users. This is an example of a two-sample test, where the comparison of two groups (here, injecting drug users 
and non-drug users) is of interest. 

There is a distinction between two-sided (or two-tailed) and one-sided (or one-tailed) hypothesis tests. Two-
sided hypothesis tests are the most common. These have as the alternative hypothesis, that the parameter of 
interest (either a proportion or a mean) is not equal to the pre-specified value in the null hypothesis (for a one-
sample test), or that the two parameters are different from one another (for a two-sample test). Hence, the 
interest does not lie in one direction specifically.  

The first example presented above is an example of a two-sided test, i.e. the alternative hypothesis is that the 
global prevalence of HCV is different from 2.5%. However, a one-sided hypothesis test is used if the interest lies in 
observing an effect in a specific direction: for example, a parameter that is greater (or smaller) than a pre-defined 
value in the null hypothesis (for a one-sample test), or that the parameter is greater (or smaller) in one population 
compared to the second population (for a two-sample test)–. The second example presented above is an example 
of a one-sided test in which the alternative hypothesis is that the global prevalence of HCV is greater among 
injecting drug users than non-drug users. 

As hypothesis testing is a tool to choose between the null and alternative hypotheses based on the available 
information, there is a risk that an incorrect decision is made. Two fundamental errors can be made while choosing 
the hypothesis. Type I error (or the significance level), denoted by α, represents the probability of rejecting the 
null hypothesis when the null hypothesis is true. It is also known as the false positive conclusion. Type II error, 
denoted by β, represents the probability of accepting the null hypothesis when the alternative hypothesis is 
actually true. These are illustrated in Table 1.  

Table 1. Illustration of type I and type II error for hypothesis testing 

 Truth 

H0 is true H0 is false 
Study findings H0 is true (fail to reject H0) Correct acceptance Type II error (β) 

H0 is false (reject H0) Type I error (α) Correct rejection 
Power (1-β) 

 

A related concept is the power, denoted as (1-β), which is the probability of rejecting the null hypothesis when 
the alternative is true, i.e. the probability of making the correct conclusion when the alternative hypothesis is true. 
The power is equal to one minus the type II error (β). It should be noted that the power of a study increases with 
an increase in the sample size. Figure 1 illustrates this relationship. In addition, there is an inverse relationship 
between the type I (α) and type II (β) errors, such that if one decreases, the other increases. 
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Figure 1. Illustration of the effect of the sample size on the power 

 
ES: effect size; SD: standard deviation 

When performing a sample size calculation to test a statistical hypothesis, the power (1-β) and significance 
level (α) have to be specified. The most common choices for the significance level are 5% or even lesser, 
such as 1%, corresponding to a small probability of making a false positive conclusion.  The most common 
choices for the power are 80% (β=0.20) or 90% (β=0.10), corresponding to a large probability to correctly 
detect a true effect. Specifying a lower significance level and a higher power will lead to a required sample 
size which is larger. Note that while most sample size calculation methods control the significance level, they 
do not always control the power. 

To illustrate the choice of the type I error and the power, consider the following example: when testing a new drug 
before it is introduced to the market, the manufacturer will perform a statistical test with the null hypothesis that 
the drug is ineffective, versus the alternative hypothesis that the drug is effective. From the perspective of the 
drugs administration agency of that market, a smaller type I error is desired since it would reduce the chances of 
the investigators approving a non-beneficial drug. On the other hand, the drug manufacturer would want to have a 
small type II error (higher power) since they want to see the impact of the drug when it is indeed effective.   

2.1.4 Confidence interval  
A confidence interval is a range of plausible values for an unknown parameter, which is used to give an 
indication of the uncertainty about the parameter. Confidence intervals can be calculated for several parameters, 
such as a proportion, a mean, differences between means or proportions, etc. Different factors affect the width of 
confidence intervals, including the confidence level, the variability in the data, and the sample size. 

The confidence interval is calculated with a pre-specified confidence level, usually chosen as 1-α. The confidence 
level represents the ‘long-run’ proportion of corresponding confidence intervals that end up containing the true 
value of the parameter. For example, a confidence interval with a 95% confidence level gives a range of values 
within which the true value of the parameter in the population lies with 95% probability. Note that the conclusions 
from a confidence interval and a hypothesis test are in general similar, in the sense that if a 95% confidence 
interval contains a hypothesised value, then the corresponding hypothesis test with a 0.05 significance level will 
almost certainly fail to reject the null hypothesis. 

Note that the width of the confidence interval gets smaller with increasing sample size. The smaller the confidence 
interval, the more precisely the parameter of interest can be estimated. The precision of the estimate can also be 
referred to as ‘margin of error’, ‘maximum tolerable error’ or ‘half of the width of the confidence interval’. The 
maximum tolerable error is the difference between the true population parameter and the estimate of the true 
population parameter derived from sampling [5].  
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In this guidance, we will also refer to absolute error or relative error. Absolute error refers to the allowed 
deviation from the true population parameter. Relative error is the ratio of the absolute error and the true 
population parameter. It is often expressed as a percentage. For example, if the parameter of interest is a 
population proportion, with the true value of 0.5, then an absolute error of 0.1 means that we allow the estimate 
to lie between 0.4 and 0.6. A relative error of 10% means that we allow a deviation of 10% from 0.5 i.e. from (1-
0.1)x0.5=0.45 to (1+0.1)x0.5=0.55.  

2.2 Types of outcome variable  
The sample size calculation depends on the type of outcome variable being investigated. Outcome variables are 
generally classified into two types: categorical (qualitative) variables, and numerical (quantitative) variables.  

Categorical variables can take on a limited number of possible values or categories. Categorical variables may 
be further subdivided into nominal and ordinal variables. Nominal variables are categorical variables that do not 
have a natural ordering (e.g. EU countries), while ordinal variables do (e.g. stages of ovarian cancer, ranging 
from stage 1 to 4). A binary or dichotomous variable is a special case when the nominal variable only has two 
categories (e.g. sick healthy or vaccinated/unvaccinated).  

Numerical variables are used to describe a quantity measurable with numbers. Furthermore, a numerical 
variable may be classified as either continuous or discrete. A continuous variable is a numerical variable that 
could take an infinite number of values within any chosen range. Examples of continuous variables are height, 
weight, age, etc. These are often obtained by measurements. A discrete variable is a numerical variable the 
value of which can be counted. For example, the number of individuals exposed to a risk factor, the number of 
people living in a household, the number of working hours in a week, etc. They can only take a finite number of 
values within any chosen range. 

2.3 Differences that are considered of importance (effect size)  
The effect size is defined as the minimal difference an investigator wishes to detect. This should be the difference 
that is epidemiologically relevant and biologically plausible. When comparing two population means, for example, 
the effect size could refer to the absolute effect size or standardised effect size.  

The absolute effect size is the minimal relevant difference in the population means/proportions of the two 
groups. For example, when the outcome of interest is the prevalence of HCV in injecting drug users and non-drug 
users, the investigator might choose a difference of 0.2% between the injecting drug users and non-drug users as 
the minimal relevant difference to be detected in the study.  

Sometimes the standardised effect size is used, often standardising the absolute effect size with respect to the 
standard deviation. In Sections 3.4.2 and 3.4.3, the standardised effect size is introduced and exemplified. 

The effect size needs to be pre-specified by the investigator. It can be based on experts’ opinions, historical data, a 
pilot study, or previous scientific knowledge. It should be noted that the effect size has a large impact on the 
sample size. There is an inverse relationship between the sample size and the effect size. Thus, a large effect size 
requires a small sample size, while a small effect size requires a large sample size. 
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Figure 2. Illustration of the relationship between effect size and sample size: a) Left panel – with 
power 90%, Type I error 5% and different values for the standard deviation; b) Right panel – with 
standard deviation 15, Type I error 5% and different values for the power 

 

 
 
 
 
 
 
 
 
 
 
 

SD: standard deviation 

While conducting a statistical analysis of the study data, it might be the case that no significant difference is found. 
This result does not imply that the null hypothesis of no (significant) difference is true, but rather indicates that 
there is insufficient evidence to reject the null hypothesis.  

This lack of evidence could have several implications. It could be that the true effect size is smaller than the one 
considered of interest. Indeed, if the true effect size is smaller than the one considered for the sample size 
calculation, then there will be insufficient evidence to reject the null hypothesis. It is also possible that the standard 
deviation of the outcomes is bigger than the one considered, and therefore, the sample size is not enough. Figure 
2 (above) illustrates these issues. The left panel shows that if the standard deviation of the outcomes increases, 
then for a given power and effect size, a bigger sample size is needed in order to be able to reject the null 
hypothesis. In addition, the right panel illustrates that a higher power will result in a bigger sample size for any 
given effect size, with differences becoming larger as the effect size becomes smaller. Hence, it could be that a 
type II error is being made, and there is not enough power to detect it. 

2.4 Scenarios  
In this section, several scenarios are introduced, which will be used throughout this guidance document to 
demonstrate sample size calculations in different situations.  In scenarios 1 and 2, the outcome of interest is of a 
binary nature. Scenario 1 describes the prevalence of a bacteria species which is antimicrobial resistant (AMR), and 
scenario 2 is about the effectiveness of influenza vaccine. Scenario 3 illustrates a  categorical outcome, namely the 
disease severity of a SARS-CoV-2 infection. Lastly, scenario  4 is about a continuous outcome of interest, namely 
the estimation of the mean cost price of a SARS-CoV-2 polymerase chain reaction (PCR) test. 

Introductions to each of the four scenarios are given below. For the specific sample size calculations, extra features 
will be introduced to illustrate the various sample size calculations for that specific data type. 

2.4.1 Scenario 1: Binary outcome (antimicrobial resistance)  
Collecting antimicrobial resistance (AMR) surveillance data is important in defining the resistance prevalence and 
informing an appropriate direction in the use of available antimicrobials. The occurrence of AMR across the EU/EEA 
varies depending on the bacterial species, antimicrobial groups, and geographical regions. Each year, 30 countries 
from the EU and EEA report antimicrobial susceptibility testing from invasive isolates (blood or cerebrospinal fluid) 
collected from local/clinical microbiology laboratories and laboratory networks to the European Antimicrobial 
Resistance Surveillance Network (EARS-Net). In this scenario, laboratories in each of the 30 countries were 
randomly selected. Disease experts want to find out how many isolates need to be taken in order to estimate, with 
a given precision, the proportion of AMR against an antimicrobial or a group of antimicrobials for a bacterial 
species, such as Escherichia coli (E. coli). 
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With this scenario, the sample size calculations for different situations will be illustrated. Firstly, the focus will be on 
the sample size calculation for the estimation of a population proportion with a desired level of precision, and also 
for hypothesis testing of a population proportion with a specified prior proportion (Sections 3.1.1 and 3.1.2). 
Secondly, the focus will be on the comparison of two populations, including sample size calculations for two 
independent proportions (e.g. the detection of significant differences in the AMR of E. coli in two different countries 
at the same time) (Section 3.2.1), and two dependent proportions (e.g. comparison of a new and a standard 
diagnostic test on the same isolates) (Section 3.2.4).  

This scenario is based on the publication, ‘Antimicrobial resistance in the EU/EEA (EARS-Net) – Annual 
Epidemiological Report for 2019’ [6]. 

2.4.2 Scenario 2: Binary outcome (vaccine effectiveness) 
As influenza viruses constantly evolve, vaccines are reformulated every year. Therefore, it is important to calculate 
annual influenza vaccine effectiveness (VE) estimates at the European level at the beginning of a seasonal 
influenza epidemic/pandemic, as well as monitor the VE along the course of the influenza season.  

To inform these calculations, EU/EEA Member States are required to include both vaccinated and unvaccinated 
individuals in their surveillance data, who do not have contraindications for the influenza vaccine.  

With this scenario, the sample size calculations for the estimation of the relative risk (RR) and odds ratio (OR) of 
medically attended acute respiratory infections (MAARI) in vaccinated versus unvaccinated children (VE = 1-RR) 
will be illustrated (Sections 3.2.2 and 3.2.3). In addition, this scenario will be used for the non-inferiority testing of 
a new vaccine compared to the standard vaccine (Section 3.2.5). 

This scenario is based on the publication, ‘Protocol for cohort database studies to measure influenza vaccine 
effectiveness in the European Union and European Economic Area Member States’ [7]. 

2.4.3 Scenario 3: Categorical outcome with more than two categories 
(disease severity SARS-CoV-2)  
In the COVID-19 pandemic, infected individuals showed a wide range of symptoms, which can be classified into 
three categories: ‘mild’, ‘moderate’, or ‘severe’. ECDC wants to investigate whether there was a difference in 
disease severity between men and women. Section 3.3 illustrates a sample size calculation based on the chi-
squared test, using multiple categories in the outcome. An alternative approach to come up with a sample size for 
this setting could be to dichotomise the disease severity (for example, into ‘mild’/‘moderate’ versus ‘severe’) and 
then use the methods to compare two proportions. 

This scenario is not based on any official reference. 

2.4.4 Scenario 4: Continuous outcome (mean cost price of a PCR test) 
Across the EU/EEA, PCR tests were conducted to verify infection with the SARS-CoV-2 virus during the pandemic. 
ECDC wants to conduct a survey among laboratories throughout the EU/EEA to estimate the mean cost price of a 
PCR test to diagnose an individual with a SARS-CoV-2 infection. For this scenario, it is assumed that the cost price 
of a PCR test will follow a normal distribution. 

With this scenario, the sample size calculations for the estimation of one sample mean with a desired precision, for 
the hypothesis testing of the sample mean with a specified power and for the comparison of two sample means 
(Section 3.4) will be illustrated.  

This scenario is not based on any official reference. 
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3 Sample size calculations for one or two 
samples (simple random sampling) 
3.1 Binary outcome for one sample 
3.1.1 Sample size calculation to estimate a population proportion with 
a desired level of precision 
Scenario 1 (Section 2.4.1) illustrates the sample size calculation for estimating a population proportion with desired 
precision. This type of calculation is based on the confidence interval. Sample size calculations for both finite and 
infinite populations are discussed. The desired precision can be specified either as an absolute or a relative error.  

In order to estimate the proportion of antimicrobial resistant (AMR) Escherichia coli (E. Coli) present in the 
country X, ECDC would like to organise a survey obtaining isolates from the national reference laboratory. 
Disease experts at ECDC expect the proportion of AMR E. coli to be around 8%. They want to know the 
number of isolates that need to be collected and tested to be 95% confident that the proportion of AMR E. 
coli is within 15% of the true population proportion. The national reference laboratory in the country X has 15 
000 isolates available for testing. A perfect diagnostic test to detect E. coli in the isolates is used in the 
survey (sensitivity and specificity equal to 100%).  
 
How many isolates need to be collected, at random, from the national reference laboratory in the country X? 

Theoretical background  
Formula-based methods are available to perform sample size calculations for the estimation of a population 
proportion, under simple random sampling [3]:  

 
The following quantities are used in the equation: 
• n = the required sample size;  
• 𝑧𝑧1−𝛼𝛼

2
 = the value from the standard normal curve corresponding to the desired confidence level of 1 − 𝛼𝛼. 

Use 𝑧𝑧1−𝛼𝛼
2
 = 1.96 for 95% confidence level; 

• N = the study population size; 
• 𝑃𝑃𝑦𝑦= the population proportion for outcome Y of interest (in the expression above, the proportion is on the 

0–1 scale);  
• 𝜖𝜖𝑟𝑟= the relative error. 

The formula above generates the sample size, n, which is required to estimate the expected proportion with a 
desired precision. The formula will return the number of isolates needed to be 95% confident that the expected 
proportion of isolates containing AMR E. coli will be anywhere between (1-𝜖𝜖𝑟𝑟)*𝑃𝑃𝑦𝑦 and (1+𝜖𝜖𝑟𝑟)*𝑃𝑃𝑦𝑦, or 𝜖𝜖𝑟𝑟%, from the 
expected population proportion of 𝑃𝑃𝑦𝑦. In the example, this is between 6.8% and 9.2%.  

When planning a study, it is desirable to determine the sample size so that the precision or maximum 
tolerable error is sufficiently small. The authors of the function ‘epi.sssimpleestb’ refer to the desired 
precision as the maximum tolerable relative error. Note that a relative error of 𝜖𝜖𝑟𝑟 corresponds to an absolute 
error of 𝜖𝜖𝑟𝑟 ∗ 𝑃𝑃𝑦𝑦. In the example, the relative error of 15% in a population proportion of 8% thus corresponds 
to an absolute error of 1.2%.  

Choosing the desired precision is not a statistical issue, but rather a practical one. It must be defined on a case-by-
case basis. A precision of 15% might be fine in the example above, but in another setting a 10%, 5% or a smaller 
value is desirable. As a consequence of the precision 𝜖𝜖𝑟𝑟 becoming smaller, the sample size n will increase.  

The population proportion 𝑃𝑃𝑦𝑦 used in the formula is unknown, and is therefore replaced by an estimate of 𝑃𝑃𝑦𝑦. In 
case no good estimate is available, it is important to realise that a smaller value of 𝑃𝑃𝑦𝑦 while fixing the relative error 
will lead to larger sample sizes. If on the other hand an absolute error is fixed, sample sizes will be the largest 
when the population proportion 𝑃𝑃𝑦𝑦 is 0.5 (50%). 
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Implementation of the scenario in R 
The formula above is implemented in the function ‘epi.sssimpleestb’ of the package ‘epiR’ in R software. The 
function requires the specification of the following arguments:  
• N corresponds to the study population size. For the scenario discussed above, the study population 

size is 15 000. If N is left unspecified by the user, a default population size of 1 000 000 will be 
assumed. In the situation of an infinite population, either a large number or the default value of 1 000 
000 can be used. Py corresponds to the expected population proportion of the outcome of interest. In 
this scenario, the expected population proportion is 8%, thus Py gets the value of 0.08.  

• The desired precision is specified by the arguments error and epsilon. The scenario assumes a 
relative error of 15%. To indicate that the precision is ‘relative’, we need to specify ‘relative’ for the 
argument error in combination with a value of 0.15 in the argument epsilon. Alternatively, an 
absolute error can be defined in the function by specifying ‘absolute’ for the argument error and 
setting epsilon equal to 0.012 (=0.08x0.15). 

• For surveys that involve the use of a diagnostic method, the characteristics of the diagnostic method 
are specified in the arguments se and sp. The argument se corresponds to the diagnostic sensitivity 
of the method used to detect positive outcomes and is indicated with a value ranging from 0–1; sp 
corresponds to the diagnostic specificity of the method used to detect positive outcomes. In this 
scenario, it is assumed that the diagnostic test is perfect and therefore both se and sp will be 
assigned the value of 1. However, if a diagnostic method is not perfect, then its sensitivity and 
specificity can be entered at the corresponding arguments.     

• For surveys not involving a diagnostic test, or for which se and sp cannot be calculated or are 
unavailable, the arguments se and sp should be specified to be equal to 1.  

• Since the investigator of the study is interested in a 95% confidence level, the argument conf.level 
will take the value 0.95, which is also the default value of the argument. 

R code for sample size calculation 
# Setting:  
# N= 15 000 
# Proportion (Py) = 0.08 
# Relative error = 0.15 (or absolute error = 0.012) 
# Sensitivity= 1 
# Specificity= 1 
# Confidence level = 0.95 
 
# The function to calculate the sample size:  
epi.sssimpleestb(N = 15 000,  # population size 
                 Py = 0.08,   # expected population prevalence 
                 Epsilon = 0.15,  # maximum tolerable error  
                 error = "relative",  # the error we refer to is a relative error 
                 se = 1,   # sensitivity 
                 sp = 1,   # specificity 
                 conf.level = 0.95 # confidence level 
                 ) 
 

R output 
[1] 1737 

Conclusion  
A total of 1 737 isolates needs to be collected at random from the national reference laboratory in the country X to 
meet the requirements of the study, i.e. the disease experts are 95% confident that the estimated proportion of 
AMR E. coli isolates is within 15% of the true population proportion. The relative error of 15% translates, for this 
example, into an absolute error of 1.2%.  

Note that when, in the code, the argument error is changed into error = "absolute" and the argument epsilon 
into epsilon = 0.012, the same result is obtained. This is to be expected as the relative error can always be 
translated into an absolute error. If there a finite population of isolates was not available, but instead an infinite 
population was available, we would change the argument N into N = 1 000 000, which would lead to a higher 
sample size of 1 964. Thus, if the population is finite, the sample size can be slightly reduced.  

If the diagnostic test used was not perfect, but had a sensitivity of 95% and specificity of 99%, we would change 
the arguments se and sp into se = 0.95 and sp = 0.99. This results in a sample size of 2 035. In the case of an 
imperfect test, the required sample size in general would be larger than with a perfect test. 
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3.1.2 Sample size calculation for hypothesis testing of a population 
proportion 
Scenario 1 (Section 2.4.1) is used to demonstrate the sample size calculation for a binary parameter that is being 
compared to a hypothesised value. For this sample size calculation, the function ‘pwr.p.test’ from the R package 
‘pwr’ will be used. Hypothesis tests can be one-sided or two-sided. The sample size calculation for an infinite 
population size is discussed first, but a small sample correction is presented thereafter for a finite population. 

This section continues to build on scenario 1, previously discussed in Section 3.1.1. To estimate the proportion of 
antimicrobial resistant (AMR) E. coli present in the country X, ECDC would like to organise a survey obtaining 
isolates from the national reference laboratory, assuming an infinite population. Historically, the proportion of AMR 
E. coli among isolates has been 8%. However, disease experts want to investigate whether the current proportion 
is different from the historical value of 8%. The experts opt for a two-sided test, given that they do not know if the 
current proportion will be lower or higher than 8%. For the sample size calculations, they assume that the 
population proportion value currently equals 6.5%. The investigators want to detect a difference with 90% power 
of the test, assuming that the test is carried out at a significance level of 5%. 

Theoretical background 
The sample size calculation for a single population proportion being compared to a known value, is often calculated 
based on the assumed adequacy of the normal approximation to the binomial distribution (formula not shown). 
That approach is reasonable when both the population proportion and the proportion under the null hypothesis are 
close to 0.5. If this requirement is not met, it is better to use an arcsine transformation of the proportions, which is 
more generally applicable [8]. The formula for sample size calculation for hypothesis testing of a population 
proportion using the arcsine transformation for a two-sided test is given by:  

 
 

The quantities used in the equation are:  

• n = the required sample size; 
• 𝑧𝑧1−𝛼𝛼

2
= the value from the standard normal distribution corresponding to the desired significance level (α).  

Use 𝑧𝑧1−𝛼𝛼
2
 = 1.96 for a two-sided hypothesis at a 5% significance level; 

• 𝑧𝑧1−𝛽𝛽 = the value from the standard normal distribution corresponding to the desired study power (1-β).  
Use  𝑧𝑧1−𝛽𝛽 = 0.84 for 80% power and 𝑧𝑧1−𝛽𝛽 =1.28 for 90% power; 

• 𝑝𝑝1= the value of the proportion under the null hypothesis; 
• 𝑝𝑝2= the true population proportion. 

Implementation of the scenario in R 
The formula is implemented in the function ‘pwr.p.test’ of the package ‘pwr’ in R software. The function 
requires the specification of the following arguments:  

• h corresponds to the effect size. In order to calculate the effect size, the R package ‘pwr’ has a built-
in function to calculate the effect size determined by 2𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛��𝑝𝑝1� − 2𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎��𝑝𝑝2�. The function ‘ES.h’ 
can be used either outside the function to store the value it returns or directly within the 
‘pwr.p.test’ function. In the R code, the latter will be demonstrated. The function ‘ES.h’ has two 
arguments, namely p1 and p2, corresponding to the proportion under the null hypothesis and the true 
population proportion, i.e. 𝑝𝑝1 and 𝑝𝑝2 in the formula, respectively. In the scenario, p1 will be assigned 
the value of 0.08 and p2 the value of 0.065; 

• The investigator requested a significance level of 5%. Therefore, 0.05 is the value chosen for the 
argument sig.level; 

• power corresponds to 0.9, as the investigator expressed the desire of being 90% sure of detecting a 
difference if in reality there is one; 

• alternative corresponds to the type of alternative hypothesis that is of interest. Depending on the 
hypothesis test that is under investigation, the argument alternative can take several values: 
‘two.sided’, ‘greater’ or ‘less’. A two-sided alternative hypothesis is in place when the investigator is 
interested in a difference and not so much about the direction of this difference (𝐻𝐻1: 𝑝𝑝2 ≠ 𝑝𝑝1), which is 
the case in the example. An alternative hypothesis can be ‘greater’ (𝐻𝐻1: 𝑝𝑝2 > 𝑝𝑝1) or ‘less’ (𝐻𝐻1: 𝑝𝑝2 < 𝑝𝑝1). 
For instance, in this scenario, the alternative is ‘two.sided’ since the investigator would like to detect a 
difference from 𝑝𝑝1 or 0.08. 
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Note that the same function can be used to do a power calculation, instead of sample size calculation. One 
argument in the function, namely n gets the value ‘NULL’, which is the default value when the aim is to 
calculate the sample size given a preferred power. Instead, if the sample size was already calculated and the 
investigator would like to know the corresponding power, n would get the value of the sample size and the 
power either gets the value ‘NULL’ or is not mentioned in the function. Consequently, the function will return 
the power for that specific setting. Note that only one element at a time can get the value ‘NULL’ or cannot 
be referenced in the function. 

R code for sample size calculation 
# Setting: 
# Proportion under null hypothesis (p1) = 0.08 
# Population proportion (p2) = 0.065 
# Significance level = 0.05 
# Power = 0.90 
 
# The function to calculate the sample size:  
pwr.p.test(h=ES.h(p1=0.08, p2=0.065), # effect size  
           sig.level= 0.05,             # significance level 
           power = 0.90,                 # power of the test 
           alternative = 'two.sided'    # two-sided hypothesis 
            ) 

R output 
     proportion power calculation for binomial distribution (arcsine transformation)  
 
              h = 0.0579191 
              n = 3132.222 
      sig.level = 0.05 
          power = 0.90 
    alternative = two.sided 

Conclusion 
For an infinite population size, a total of 3 133 isolates needs to be collected at random, and tested from the 
national reference laboratory in the country X to meet the requirements of the study, i.e. disease experts at ECDC 
will have 90% power of detecting a difference if it exists, assuming that a two-sided test is carried out at a 
significance level of 5%. Note that the output gives a sample size n = 3132.222 corresponding to an effect size of 
h = 0.0579191. When the estimated sample size is not a whole number, this number should be rounded upward to 
the next whole number, resulting in a required sample size of 3 133. 

If a two-sided hypothesis is not of interest, but rather a one-sided alternative hypothesis 𝐻𝐻1: 𝑝𝑝2 > 𝑝𝑝1, we will 
change the argument alternative into alternative = 'greater'. This results in a required sample size of 2 553. 
Thus, note that to reliably detect an effect for a two-sided hypothesis, it requires a larger sample than to detect an 
effect for a one-sided hypothesis at the same significance level.  

R code for power calculation 
In addition to the numerical output via the ‘pwr’ package, the package also provides a graphical overview of 
changes in power as the sample size changes. In order to obtain the graph, the result from the ‘pwr.p.test’ 
function first has to be saved in R. Then, the results can be obtained using the ‘plot’ function. 

# Save the analysis into an object:  
one.prop <- pwr.p.test(h=ES.h(p1=0.08, p2=0.065), 
           sig.level= 0.05, power = 0.90, alternative = 'two.sided' ) 
 
# Make plot: 
plot(one.prop) 
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R output 
Figure 3. Power calculations as a function of sample size for one sample proportion 

 

Conclusion 
The graph that R returns shows that when the sample size increases, the power increases as well. While the graph 
is steep when the sample sizes are small, it levels off at higher sample sizes. This means that when the sample size 
is small, there is a large gain in power when increasing the sample size. However, if the sample size is high, the 
gain in power by increasing the sample size gets smaller. 

R code for finite population correction 
If the population size is no longer infinite, but finite, then an extra step needs to be performed after calling the 
function ‘pwr.p.test’ in R. Let us assume that in the example used previously, the only quantity that changes is 
the population size N. The (finite) population size now consists of 15 000 isolates. In order to correct for this finite 
sample size, the following formula is used: 

𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑛𝑛 𝑥𝑥 𝑁𝑁
𝑛𝑛 + 𝑁𝑁 

where n is the sample size obtained from the function ‘pwr.t.test’, i.e. 3132.222 and N is the population size, 
namely 15 000 isolates which can be sampled (at random). In order to correct for this finite sample size, we can 
use the function ‘correct.N’ (see Annex for the source file). The function has two arguments:  

• n, i.e. the sample size obtained from the appropriate R function. 
• N, i.e. the population size. For this scenario, N would get the value 15 000. 

# Correction of sample size if population size is finite 
correct.N(n=3132.222, N=15 000) 

R output  
[1] 2591.151 

Conclusion 
For an infinite population size, a total of 3 133 isolates needs to be collected at random and tested from the 
national reference laboratory in the country X to meet the requirements of the study. Instead if the population is 
finite and consists of 15 000 isolates that can be sampled, then it is sufficient to sample 2 592 isolates at random 
to meet the requirements of the study.  
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Note again, that it is important to round the number given in the R output upwards to the nearest integer. In 
the situation of a finite population, a slightly smaller sample size is required as compared to a sample taken 
from an infinite population, because each sample proportionately contains more information in a finite 
population than in an infinite population. 

3.2 Binary outcomes for two samples  
In this section we consider the two-sample problem in which two population proportions need to be compared. 
There are three common summary measures to compare the two proportions 𝑝𝑝1 and 𝑝𝑝2:  

• using the absolute difference of the proportions 𝑝𝑝1 − 𝑝𝑝2;  
• using a relative risk defined as the ratio of the two proportions 𝑝𝑝1/𝑝𝑝2; or  
• as an odds ratio defined as 𝑝𝑝1/(1−𝑝𝑝1)  

𝑝𝑝2 /(1−𝑝𝑝2)
.  

Sample size calculations related to each of these summary measures are presented in this section. As indicated by 
Julious (2010) [9], although the three approaches seem to be quite different, they are the same – approximately 
and algebraically. Thereafter, sample size calculations for dependent proportions will be described, as well as 
sample size calculations for non-inferiority tests.  

3.2.1 Sample size estimation for a difference in two independent 
proportions 
Scenario 1 (Section 2.4.1) is now used to illustrate the sample size calculation to estimate a difference between 
two independent population proportions. To perform the calculation, the function ‘pwr.2p.test’ from the R 
package ‘pwr’ is used.  

Disease experts from ECDC would like to conduct a survey in two countries, X and Y, and obtain isolates from their 
national reference laboratories. The aim is to estimate whether there is a difference in the proportion of AMR E. 
coli isolates collected in the same time period between the two countries. The disease experts would like to detect 
a difference in the proportion of AMR E. coli isolates as small as 2.5%. They expect one country to have a 
proportion of AMR E. coli isolates of 10%, while the other is expected to have a proportion of 7.5%. Again, if the 
difference exists, the investigators wish to be 90% confident of detecting it (= power of the test), assuming that a 
two-sided test is carried out at a significance level of 5%. 

How many isolates should be sampled at random, in the reference laboratories of both countries, so that the 
disease experts achieve the desired power to test their hypothesis? 

Theoretical background 
Similar to Section 3.1.2, this section focuses on the sample size calculations that are implemented in the R function 
‘pwr.2p.test’. The advantage of the proposed calculation and function is that it does not rely on the normal 
approximation of the binomial distribution, which requires both proportions to be close to 0.5. Therefore, this 
section displays the formula for the sample size calculation to test for a difference in two independent populations 
using the arcsine transformation [8].  

 
The quantities used in the equation are: 

• n = the number of subjects in each group; 
• 𝑧𝑧1−𝛼𝛼

2
= the value from the standard normal distribution corresponding to the desired significance level (α).  

Use 𝑧𝑧1−𝛼𝛼
2
 = 1.96 for a two-sided hypothesis at a 5% significance level; 

• 𝑧𝑧1−𝛽𝛽 = the value from the standard normal distribution corresponding to the desired study power (1-β).  
Use  𝑧𝑧1−𝛽𝛽 = 0.84 for 80% power and  𝑧𝑧1−𝛽𝛽 =1.28 for 90% power; 

• 𝑝𝑝1= the expected population proportion in the first group; 
• 𝑝𝑝2= the expected population proportion in the second group. 

Implementation of the scenario in R 
The formula is implemented in the function ‘pwr.2p.test’ of the package ‘pwr’ in R software. Although the name 
of the function is different from the function ‘pwr.p.test’, which is used to calculate the sample size for a 
proportion with the intent of doing hypothesis testing, the arguments of both functions are the same. Note also, 
that the effect size is determined in the same way. More information is available in Section 3.1.2.  
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R code for sample size calculation  
# Setting: 
# N = infinite population size 
# Proportion (p1) = 0.10 
# Proportion (p2) = 0.075 
# Significance level = 0.05 
# Power = 0.90 
 
# The function to calculate the sample size: 
pwr.2p.test(h = ES.h(p1 = 0.10, p2 = 0.075),  # effect size 
            sig.level = 0.05,       # significance level 
            power = 0.90,      # power of the test 
            alternative = 'two.sided'     # two-sided hypothesis 
            ) 

R output 
     Difference of proportion power calculation for binomial distribution (arcsine transformation)  
 
              h = 0.08869008 
              n = 2671.628 
      sig.level = 0.05 
          power = 0.90 
    alternative = two.sided 
 
NOTE: same sample sizes per group 

Conclusion 
When the study population under investigation is of an infinite size, a total of 5 344 isolates are needed. This 
means 2 672 isolates each in the reference laboratories of country X and Y need to be selected at random and 
tested. Notice that the sample size obtained is the sample size per group. As before, when the estimated sample 
size is not a whole number, this number should be rounded upward to the next integer. 

Note that, the smaller the difference is between the population proportions in the two groups (|𝑝𝑝1- 𝑝𝑝2|), the larger 
is the required sample size in both the groups. Keeping the difference between the two population proportions 
constant, the closer the population proportions are to 0.5, the larger the sample size. 

R code for finite population correction 
If the study population is finite, rather than infinite as discussed above, then the sample size needs to be 
corrected. The formula to do that has been described in Section 3.1.2. The function created in R to correct for 
finite population size ‘correct.N’ has also been described in Section 3.1.2. For example, if the number of 
isolates available per country is 15 000, this would lead to the following code: 

# Correction of sample size if population size is finite 
correct.N(n=2671.628 , N= 15 000) 

R output  
[1] 2267.727 

Conclusion 
If the population is finite and consists of 15 000 isolates per country that can be sampled, then it is sufficient to 
sample 2 268 isolates at random to meet the requirements of the study from each country. This will result in a total 
sample size of 4 536 isolates.  

R code for power calculation 
Similar to Section 3.1.2, we can visualise the changes in power by using the ‘plot’ function. 

# Save the analysis into an object:  
two.prop <- pwr.2p.test(h=ES.h(p1=0.10, p2=0.075), 
           sig.level= 0.05, power = 0.90, alternative = 'two.sided' ) 
# Make plot 
plot(two.prop) 
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R output 
Figure 4. Power calculations as a function of sample size for two independent proportions 

 

Conclusion 
The graph shows the increase of power with increasing sample size. The optimal sample size corresponding to a 
power of 90% are 2 672 isolates in both the groups, or a total of 5 344 isolates. 

3.2.2 Sample size estimation for odds ratio  
An odds ratio is a commonly used statistic to compare the relative odds of the occurrence of an outcome of 
interest (e.g. disease). The odds ratio represents the odds that an outcome will occur in population 1, compared to 
the odds of the outcome occurring in population 2. This section explains sample size calculations when testing the 
null hypothesis that the odds ratio equals 1, versus the alternative hypothesis that the odds ratio is different from 
1. Scenario 2 (Section 2.4.2)  is used to illustrate the sample size calculation, using the function 
‘RelativeRisk.Equality’ from the R package ‘TrialSize’. A comparison is made with a sample size 
calculation based on an absolute risk difference, using the function ‘pwr.2p.test’ from the R package ‘pwr’ 
(introduced in Section 3.2.1).  

Disease experts from ECDC want to estimate the influenza vaccine effectiveness (VE) at the beginning of a 
seasonal influenza epidemic among infants and children in the country Z. In the study, medically attended acute 
respiratory infection (MAARI) caused by the influenza virus is under investigation. The research question is 
formulated in terms of the odds ratio, comparing the odds of a MAARI for vaccinated children with the odds of a 
MAARI for unvaccinated children. Previous data suggest that 1.5% of the unvaccinated children have a MAARI 
during the flu season. Based on an expected vaccine effectiveness of 50%, the odds ratio is expected to be 0.496 
(further details are given in the subsequent sections). An equal number of vaccinated and unvaccinated children 
will be selected at random from the computerised databases of general practitioners (GPs) throughout the year. 

How many children need to be selected to have 90% power, for a one-sided 5% significance level? A one-sided 
hypothesis is used because the aim is to show that the odds ratio is lower than 1.  

 
 
 
 



Sample size guidance for surveillance data TECHNICAL GUIDANCE 

18 
 
 

Theoretical background 
The following formula determines the sample size when the difference between two populations is expressed in 
terms of the odds ratio [10]: 

 
 

The following quantities are used in the equation: 
• 𝑛𝑛𝐶𝐶 = the number of subjects in the second group; 
• k = the ratio of sample size in the first versus second group; 
• 𝑧𝑧1−𝛼𝛼

2
= the value from the standard normal distribution corresponding to the desired significance level (α).  

Use 𝑧𝑧1−𝛼𝛼
2
 = 1.96 for a two-sided hypothesis at a 5% significance level; 

• 𝑧𝑧1−𝛽𝛽 = the value from the standard normal distribution corresponding to the desired study power (1-β).  
Use  𝑧𝑧1−𝛽𝛽 = 0.84 for 80% power and  𝑧𝑧1−𝛽𝛽 =1.28 for 90% power; 

• 𝑝𝑝𝑇𝑇= the expected population proportion in the first group; 
• 𝑝𝑝𝐶𝐶= the expected population proportion in the second group; 
• OR = odds ratio. The odds ratio is the odds of the outcome in the first group relative to the odds of the 

outcome in the second group. The OR can be calculated with the following formula: 𝑝𝑝𝑇𝑇/(1−𝑝𝑝𝑇𝑇)  
𝑝𝑝𝐶𝐶 /(1−𝑝𝑝𝐶𝐶)

.  

Implementation of the scenario in R 
Firstly, the scenario is implemented using the odds ratio. Secondly, a comparison is made with the absolute risk 
difference approach. 

Implementation of the sample size calculation using odds ratio in R 
The formula based on the odds ratio approach is implemented in the function ‘RelativeRisk.Equality’ of the 
package ‘TrialSize’ in R software. The function requires the specification of the following arguments: 
• alpha corresponds to the desired two-sided significance level. In the scenario, as it is in a one-sided test, this 

argument is assigned the value of 2*0.05, which corresponds to the one-sided significance level of 0.05. 
• beta corresponds to 1 minus the power (power=1-β). In the scenario, this argument is assigned the value of 0.1. 
• k corresponds to the ratio of sample size in the two groups. In the scenario, it is assigned the value of 1. 
• pt corresponds to the expected proportion in the first group. In the scenario, this is the group of vaccinated 

children. pt is assigned the value of 0.0075, i.e. the expected proportion of vaccinated children experiencing 
MAARI. This comes from the information that the experts expect a 50% vaccine effectiveness, so 0.5 times the 
proportion of the vaccinated children experiencing MAARI (1.5%). 

• pc corresponds to the expected proportion in the second group. In the scenario, this is the group of unvaccinated 
children. pc will be assigned the value of 0.015, i.e. the expected proportion of unvaccinated children 
experiencing MAARI. 

R code for sample size calculation 
# Setting: 
# N = infinite population size 
# Expected population proportion in group 1 (pt) = 0.0075 
# Expected population proportion in group 2 (pc) = 0.015 
# Expected odds ratio (OR) = 0.496 
# Significance level = 0.05 (one-sided). The function uses a two-sided significance level so alpha= 0.10 (two-sided) 
# Power = 0.90 or beta = 0.10 
# Equal sample sizes for group 1 and group 2 (k=1) 
 
# Calculate the odds ratio 
pt<-0.0075 
pc<-0.015 
OR <- (pt*(1-pc))/(pc*(1-pt)) 
 
# The function to calculate the sample size: 
RelativeRisk.Equality(alpha = 0.1,  # significance level 
                      beta = 0.1,  # type II error 
                      or = OR,  # expected odds ratio  
                      k = 1,  # ratio of sample sizes in the two groups 
                      pt = pt,  # expected proportion in group 1(vaccinated)  
                      pc = pc  # expected proportion in group 2 (unvaccinated group 
                      ) 
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R output 
3523.422  

Conclusion 
For a study population of infinite size, a total of 7 048 children are needed, i.e. 3 524 unvaccinated and 3 524 
vaccinated children, to have 90% power to show that the odds ratio is less than 1. Note that the sample size given 
in the R output is the size per group. 

Calculations based on the absolute risk difference 
The implementation of the absolute risk difference approach is similar to the approach described in Section 3.2.1. 
The formula is implemented in the function ‘pwr.2p.test’ of the package ‘pwr’ in R software.  

R code for sample size calculation 
The expected proportion of unvaccinated children experiencing MAARI is 1.5% (p2), and the expected proportion 
of vaccinated children experiencing MAARI equals 0.75% (p1).   

How many children are needed to have 90% power to detect a difference (in fact a decrease) of proportion 
between the vaccinated and unvaccinated groups, using a one-sided test with a 5% level of significance?  

# Setting: 
# N = infinite population size 
# Expected proportion in group 1 (p1) = 0.0075 
# Expected proportion in group 2 (p2) = 0.015 
# Significance level (alpha) = 0.05 
# power = 0.90 
 
pwr.2p.test(h = ES.h(p1 = 0.0075, p2 = 0.015),  # effect size 
                 sig.level = 0.05,    # significance level 
                 power = 0.90,    # power of the test 
                 alternative = 'less'   # one-sided hypothesis 
                 ) 

R output 
Difference of proportion power calculation for binomial distribution (arcsine transformation)  
 
              h = -0.0721432 
              n = 3290.85 
    sig.level = 0.05 
          power = 0.90 
    alternative = less 
 
NOTE: same sample sizes per group 

Conclusion 
The sample size provided in the R output is the required sample size per group. A total of 6 582 children, 3 
291 unvaccinated and 3 291 vaccinated children, need to be sampled in the country Z to meet the 
requirements of the study.  

Notice that this number is similar to the sample size based on the odds ratio, although slightly lower (about 7%). 
When the population proportions are close to 0.5, the two methods will be even more similar to each other.  

3.2.3 Sample size estimation for relative risk 
The relative risk is another commonly used statistic for the comparison of proportions. Relative risk is the ratio of 
the probability of an outcome in group 1 to the probability of the outcome in group 2. This section discusses how 
sample size calculations can be obtained when we want to test the null hypothesis that the relative risk equals 1, 
versus the alternative hypothesis that the relative risk is less than 1. 

Disease experts from ECDC want to estimate the influenza vaccine effectiveness (VE) at the beginning of a 
seasonal influenza epidemic among infants and children in the country Z. In the study, medically attended acute 
respiratory infection (MAARI) caused by the influenza virus is under investigation. The research question is 
formulated in terms of the relative risk, comparing the risk of a MAARI for vaccinated children with the risk of a 
MAARI for unvaccinated children. Previous data suggest that 1.5% of the unvaccinated children have a MAARI 
during the flu season. The experts anticipate a 50% vaccine effectiveness, corresponding to a relative risk of 0.5. 
An equal number of vaccinated and unvaccinated children will be selected at random from the computerised 
databases of general practitioners (GPs) throughout the year.  
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How many children need to be selected to have 90% power, for a one-sided 5% significance level? A one-sided 
hypothesis is used because the aim is to show that the relative risk is lower than 1. 

Theoretical background 
The formula to calculate the sample size for detecting a relative risk is as follows [1]:

 
 
The following quantities are used in the equation: 

• n = the total sample size required (in all groups together);  
• r = the allocation ratio of the sample in group 1 versus group 2, i.e. the ratio of the sample size in group 1 

versus the sample size in group 2; 
• 𝑧𝑧1−𝛼𝛼

2
 = the value from the standard normal distribution corresponding to the desired significance level (α).  

Use  𝑧𝑧1−𝛼𝛼
2
 = 1.96 for a two-sided hypothesis or 𝑧𝑧1−𝛼𝛼 = 1.64  for a one-sided hypothesis at a 5% significance 

level; 
• 𝑧𝑧1−𝛽𝛽 = the value from the standard normal distribution corresponding to the desired study power (1-β).  

Use  𝑧𝑧1−𝛽𝛽 = 0.84 for 80% power and  𝑧𝑧1−𝛽𝛽 =1.28 for 90% power; 
• 𝜋𝜋 = the expected population proportion for group 2; 
• 𝜆𝜆 = the relative risk (the ratio of the probability of outcome in group 1 to the probability in group 2); 
• 𝑝𝑝𝑐𝑐 = the pooled population proportion calculated by 𝑝𝑝𝑐𝑐 = 𝜋𝜋(𝑟𝑟𝑟𝑟+1)

𝑟𝑟+1
. Note that this reduces to the average of 

the population proportions of group 1 and group 2 if equal-sized groups are assumed (i.e. if allocation ratio 
r=1). 

Implementation of the scenario in R 
The formula is implemented in the function ‘epi.sscohortc’ of the package ‘epiR’ in R software. The function 
requires the specification of the following arguments:   

• irexp0 is the expected proportion of the outcome in group 2. In the scenario, this is the unvaccinated 
group of children. The argument is assigned the value of 0.015. 

• irexp1 is the expected proportion of the outcome in group 1. In the scenario, this is the vaccinated group 
of children. The value is obtained as 𝜆𝜆 ∗ 𝜋𝜋 = 0.5 ∗ 0.015 = 0.0075. 

• The investigator required a significance level of 5%. Therefore, 0.95 is the value chosen for the confidence 
level specified in the argument conf.level; 

• power corresponds to 0.90, as the investigator wanted to be 90% sure of detecting a relative risk less than 1; 
• sided.test corresponds to 1 if the test is one-sided, and 2 if two-sided. Here, it will be a one-sided test 

since we are testing the alternative hypothesis that the relative risk is less than 1. 
• r is the ratio of the sample size in group 1 versus in group 2. In this scenario, it is specified as 1. 

R code for sample size calculation 
# Setting: 
# N = infinite population size 
# Expected proportion in group 1 (irexp1) = 0.0075 
# Expected proportion in group 2 (irexp0) = 0.015 
# Significance level (alpha) = 0.05 
# Power = 0.90 
 
epi.sscohortc(irexp1 = 0.0075, # proportion of outcome in the vaccinated group 
              irexp0 = 0.015,  # proportion of outcome in the unvaccinated group 
              power = 0.90,  # power of the test 
              r = 1,   # ratio of the sample sizes in the two groups 
              sided.test = 1,  # one-sided hypothesis 
              conf.level = 0.95) # confidence level 
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R output 
$n.total 
[1] 6772 
 
$n.exp1 
[1] 3386 
 
$n.exp0 
[1] 3386 
 
$power 
[1] 0.9 
 
$irr 
[1] 0.5 
 
$or 
[1] 0.4962217 

Conclusion 
For the specified significance level and power, a total of 6 772 children (3 386 vaccinated and 3 386 unvaccinated) 
are needed in the study. The relative risk (irr in the R output) is the risk of the outcome in the vaccinated group, 
divided by the risk of the outcome in the unvaccinated group. It equals 0.5. 

The sample size based on the relative risk is similar to the sample size calculations based on the odds ratio or the 
risk difference. When the population proportions are close to 0.5, the results will be even closer to each other. 

3.2.4 Sample size estimation for a difference in two dependent 
population proportions 
Scenario 1 (Section 2.4.1) is used in this section to illustrate the sample size calculation to estimate a difference 
between two dependent population proportions. Two approaches will be illustrated in this section. To perform the 
calculations, the function  ‘McNemar.Test’ from the R package ‘TrialSize’ and the function 
‘sampleSizeMcNemar’ is used (see Annex for the source file). 

This section continues to build on scenario 1, previously discussed in Section 3.1.1. A new diagnostic test is 
developed to detect antimicrobial resistant (AMR) E. coli. The new diagnostic test needs to be compared with the 
old test. ECDC wants to organise a survey obtaining isolates from the national reference laboratory, assuming an 
infinite population. Each isolate will be analysed with both the old and new diagnostic tests, in order to make a 
comparison between them. The investigators wish to detect a difference in the proportion of isolates that test 
positive for AMR using the two diagnostic tests with 90% power of the test, assuming that the test is carried out at 
a significance level of 5%. 

Depending on the information available from literature or pilot data, for the expected difference between the two 
dependent proportions, a different method for the sample size calculation can be chosen.  

For the first method, investigators need to be able to make a guess about the proportion of tests that would shift 
from a positive outcome (using the old test) to a negative outcome (using the new test), and vice versa. Suppose 
that the investigators believe that the proportion of tests that are positive using the old test, but negative using the 
new test is 1%. In addition, investigators believe that the proportion of tests that are negative using the old test, 
but positive using the new test is 2%.  

For the second method, investigators only need to make a guess about the proportion of isolates that would test 
positive using the old and new tests. For the sample size calculations, investigators assume that the proportion of 
isolates that test positive for AMR based on the old test is 8%, while the proportion of isolates that test positive for 
AMR based on the new test is 9%. 

How many isolates should be sampled at random, so that the investigators achieve the desired power to test 
their hypothesis? 
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Theoretical background for method 1 
In contrast to the previous sections, two correlated/dependent proportions are of interest here. McNemar’s test is 
designed for the comparison of two correlated proportions [11]. Studies with a ‘before’ and ‘after’ design are 
examples of dependent proportions. For example, when the binary outcome is collected on the same unit before 
and after an intervention or treatment. Another example is the comparison of a new and a standard diagnostic test 
on the same isolates. Here, we are interested in testing the null hypothesis that the proportions for the old test (or 
before intervention) and the new test (or after intervention) are the same, and the alternative hypothesis is the 
inequality of the two proportions.  

Different methods exist to compute the sample size for testing dependent proportions. These depend on the 
information that is available about the outcome. The method presented in this section can be used when the 
proportion of subjects that shift from a positive outcome (e.g. using the first test) to a negative outcome (e.g. 
using the second test), and vice versa, are available. The formula to calculate the sample size is given below [10]: 

 

The quantities used in the equation are:  

• n = the required sample size; 
• 𝑧𝑧1−𝛼𝛼

2
 = the value from the standard normal distribution corresponding to the desired significance level (α).  

Use 𝑧𝑧1−𝛼𝛼
2
 = 1.96 for a two-sided hypothesis at a 5% significance level; 

• 𝑧𝑧1−𝛽𝛽 = the value from the standard normal distribution corresponding to the desired study power (1-β).  
Use  𝑧𝑧1−𝛽𝛽 = 0.84 for 80% power and  𝑧𝑧1−𝛽𝛽 =1.28 for 90% power; 

• 𝑝𝑝01 = the proportion of subjects that shift from not having the outcome based on the first test, to 
having the outcome based on the second test; 

• 𝑝𝑝10 = the proportion of subjects that shift from having the outcome based on the first test, to not 
having the outcome based on the second test; 

• 𝜓𝜓 = 𝑝𝑝01
𝑝𝑝10

 is the ratio of the proportion of subjects that make the shift from a negative to positive outcome 
with the proportion of subjects that make the shift from a positive to negative outcome; 

• 𝜋𝜋𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑝𝑝01 + 𝑝𝑝10 is the total proportion of subjects that make a shift in the outcome. 

Implementation of the scenario in R 
The formula is implemented in the function ‘McNemar.Test’ from the R package ‘TrialSize’. The function 
requires the specification of the following arguments:  

• alpha is the significance level. The investigator requires a significance level of 5%. Therefore, 0.05 is 
passed to the argument alpha. 

• beta corresponds to the type II error (β) (power = 1 – β). In the scenario, this argument is assigned the 
value of 0.1. 

• psai is the ratio of 𝑝𝑝01
𝑝𝑝10

. This is equal to 𝜓𝜓 in the formula and is assigned a value of 𝑝𝑝01
𝑝𝑝10

= 0.02
0.01

= 2. 
• paid is the sum of 𝑝𝑝01 + 𝑝𝑝10. This is equal to 𝜋𝜋𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 and has a value of 𝑝𝑝01 + 𝑝𝑝10 = 0.02 + 0.01 = 0.03. 

R code for sample size calculation 
# Setting:  
# Proportion shifting from a negative to a positive outcome (p01) = 0.02 
# Proportion shifting from a positive to a negative outcome (p10) = 0.01 
# Significance level= 0.05 
# Power = 0.90, beta = 0.10 
 
p01=0.02 
p10=0.01 
psai=p01/p10 
paid=p01+p10 
 
mcnemar<-McNemar.Test(alpha=0.05, # significance level 
                      beta=0.10,   # type II error 
                      psai=psai,    # ratio of proportions for discordant cell 
                      paid=paid)   # sum of proportions for discordant cell 
mcnemar 
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R output 
[1]  3148.071 

Conclusion 
The total number of isolates required for the specified significance level and power is 3 149. Note that the output 
gives a sample size n = 3148.071. This number should be rounded upward to the next integer, resulting in a 
required sample size of 3 149. 

Theoretical background for method 2 
While the previous method requires information about the proportion of subjects that shift from a positive to a 
negative outcome, and vice versa, this information is not always available. Often, only information about the 
proportion of positive outcomes with the old and new test is available. However, this information is not sufficient to 
determine an ‘exact’ sample size. Lachenbruch (1992) [11] proposes the calculation of a range of possible sample 
sizes. The method only needs information on the proportions in the two dependent groups (e.g. the proportions 
before and after intervention). 

The formula for the sample size calculation is given below: 

 
The quantities used in the equation are:  

• n = the required sample size; 
• 𝑧𝑧1−𝛼𝛼

2
= the value from the standard normal distribution corresponding to the desired significance level (α).  

Use 𝑧𝑧1−𝛼𝛼
2
 = 1.96 for a two-sided hypothesis at a 5% significance level; 

• 𝑧𝑧1−𝛽𝛽 = the value from the standard normal distribution corresponding to the desired study power (1-β).  
Use  𝑧𝑧1−𝛽𝛽 = 0.84 for 80% power, and  𝑧𝑧1−𝛽𝛽 =1.28 for 90% power; 

• 𝑝𝑝1= the expected proportion having a positive outcome, for the first test; 
• 𝑝𝑝2= the expected proportion having a positive outcome, for the second test; 
• 𝑝𝑝11= the expected proportion having a positive outcome for the first and second test. This probability is 

rarely known in practice, but ranges between min(p1, p2) and max(0, p1 + p2  - 1); 
• 𝑠𝑠 = (p2 - p11)/(p2 + p1 - 2p11), which is calculated for the minimal and maximal value of 𝑝𝑝11. In addition, a 

value of 𝑠𝑠 midway between the minimal and maximal values are computed. This is called the midpoint. 

Implementation of the scenario in R 
The formula is implemented in the function ‘sampleSizeMcNemar’ (see Annex for the source file). The function 
requires the specification of the following arguments:  

• p1 and p2, correspond respectively to the proportion of positive outcomes for the first test, and the 
proportion of positive outcomes for the second test. In the scenario, p1 is assigned the value 0.08, and p2 
the value 0.09. 

• alpha is the significance level. The investigator required a significance level of 5%. Therefore, 0.05 is 
passed to the argument alpha. 

• power corresponds to 0.9, as the investigator required 90% surety of detecting a difference. 
• specify plot=TRUE to make a plot of the possible sample sizes as a function of the proportion of tests that 

make a switch from a positive to a negative result among the tests that make a shift. 

R code for sample size calculation 
# Setting:  
# N = infinite population size 
# Proportion having positive outcome for first test (p1) = 0.08 
# Proportion having positive outcome for second test (p2) = 0.09 
# Significance level= 0.05 
# Power = 0.90 
 
sampleSizeMcNemar(p1=0.08, # proportion having positive outcome for test 1 
                  p2=0.09,  # proportion having positive outcome for test 2  
                  alpha = 0.05,  # significance level 
                  power = 0.90) # power of the test 
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R output  
N_min N_mid N_max  
17863  9457  1051  
 
 
Figure 5. Possible sample sizes as a function of the proportion of tests that make a switch from a 
positive to a negative result, among the tests that make a shift 

 

Conclusion 
Note that this method does not specify an exact sample size, but a range of possible sample sizes. In the R output, 
three values for the sample size are given: the minimum, midpoint and maximum. These are the sample sizes 
based on the smallest and the largest possible proportion of tests that make the shift from a positive to negative 
outcome, among the tests that make a shift (from positive to negative or vice versa), and the midpoint of these. 
The values given by the minimum and maximum reflect the level of uncertainty on the sample size. From the 
output, we see that at least 1 051 samples are needed, and at most 17 863. The midpoint value of 9 457 samples 
is a reasonable compromise. Therefore, the number of isolates needed to be sampled is 9 457.  

The plot illustrates the relationship between the sample size and the proportion of shifts from positive to negative, 
among the tests with a shift in the test result. Note that in the previous method, it was assumed that the 
proportion of isolates that shift from a positive to a negative result equals 0.01, and the proportion switching from 
negative to positive equals 0.02. As a result, the proportion of shifts from positive to negative among the isolates 
with a change in outcome equals 0.01/(0.01+0.02)=0.33. In the plot, the sample size corresponding to this 
proportion is 3 153, resembling the result in the previous section. The plot illustrates the uncertainty in the sample 
size due to the missing information about the amount of shifts in the outcome, and gives an idea of the possible 
range of sample sizes required for the expert to make the best choice based on the available information. 

3.2.5 Sample size estimation for a non-inferiority test 
The objective of a non-inferiority study is to show that a treatment is not inferior to a standard treatment or 
control. Non-inferiority can be investigated in terms of the difference between two treatments or in terms of the 
relative effect (e.g. odds ratio, risk or benefit) of the treatments for the disease under study. 

Two-sample proportion test for non-inferiority using absolute difference 
Scenario 2 (Section 2.4.2) is used to illustrate the sample size calculation for a non-inferiority test. In order to 
perform the calculation, the function ‘TwoSampleProportion.NIS’ from the R package ‘TrialSize’ is used.  
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Disease experts from ECDC want to compare two different vaccines which are used in vaccination centers in 
the country X. It is of interest to establish non-inferiority of the new vaccine in protecting children against the 
medically attended acute respiratory infection (MAARI) caused by the influenza virus, as compared to the 
standard vaccine. A difference in the rate of effectiveness between the two vaccines of less than 10% is 
considered to be of no clinical importance. Thus, the non-inferiority margin is chosen to be 10% (i.e. δ = -
0.10). Previous data suggest a rate of effectiveness of 65% for the standard vaccine. The experts expect a 
rate of effectiveness of 60% for the new vaccine. 

Using a one-sided 5% significance level, how many children should be sampled at random so that the experts can 
investigate non-inferiority of the new vaccine with 90% power? 

Theoretical background 
Let ε = 𝑝𝑝1 – 𝑝𝑝2 be the difference between the population response rates of a treatment (𝑝𝑝1) and a control (𝑝𝑝2). For 
a non-inferiority test, the following hypotheses are used: 

H0: ε ≤ δ versus Ha: ε > δ, 

where δ is the non-inferiority margin. When δ < 0, the rejection of the null hypothesis indicates non-inferiority of 
the treatment against the control. 

Chow et al., (2018) [10] proposed the following formula to determine the sample size required in a non-
inferiority study: 

  

  

The following quantities are used in the equation: 

• 𝑛𝑛1= the required sample size in the treatment group; 
• 𝑛𝑛2= the required sample size in the control group; 
• 𝑘𝑘 = 𝑛𝑛1

𝑛𝑛2
 = the ratio between the sample size in the treatment and control groups; 

• 𝑧𝑧1−𝛼𝛼= the value from the standard normal distribution corresponding to the desired significance level (α).  
Use 𝑧𝑧1−𝛼𝛼 = 1.64  for one-sided hypothesis at a 5% significance level; 

• 𝑧𝑧1−𝛽𝛽 = the value from the standard normal distribution corresponding to the desired study power (1-β).  
Use  𝑧𝑧1−𝛽𝛽 = 0.84 for 80% power, and  𝑧𝑧1−𝛽𝛽 =1.28 for 90% power; 

• 𝑝𝑝1 = the population response rates in the treatment group; 
• 𝑝𝑝2 = the population response rates in the control group; 
• ε = the difference between 𝑝𝑝1 and 𝑝𝑝2 (calculated as 𝑝𝑝1- 𝑝𝑝2); 
• 𝛿𝛿 = the non-inferiority margin. 

Implementation of the scenario in R 
The formula above is implemented in the function ‘TwoSampleProportion.NIS’ of the R package 
‘TrialSize’ in R software. The function requires the specification of the following arguments:  

• alpha corresponds to the desired one-sided significance level. In the scenario, this argument is assigned 
the value of 0.05. 

• beta corresponds to the type II error (β) (power = 1 – β). In the scenario, this argument is assigned the 
value of 0.1. 

• p1 corresponds to the population response rate for the treatment. In the scenario, it is assigned the value 0.6. 
• p2 corresponds to the population response rate for the control. In the scenario, it is assigned the value 0.65. 
• k corresponds to the ratio of sample size in the treatment and control group. In the scenario, it is assigned 

the value of 1 such that the same number of children receive treatment (with the new vaccine) and control 
(with the standard vaccine).  

• delta corresponds to the difference between p1 and p2 (this is ε in the formula). In the scenario, it is 
assigned the value of -0.05.  

• margin corresponds to the non-inferiority margin. In the scenario, this argument is assigned the value of -
0.10. The non-inferiority margin is the amount by which the effect of a new treatment is not considered to 
be unacceptably worse than the effect of the standard treatment. In the scenario, this means that the 
difference between the effectiveness of the standard vaccine and the new is lower than 10%. 
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R code for sample size calculation 
# Setting: 
# N = infinite population size 
# p1 = 0.6 
# p2 = 0.65 
# Significance level (alpha) = 0.05 (one-sided) 
# Power = 0.90 or beta = 0.10 
 
TwoSampleProportion.NIS(alpha = 0.05, # significance level 
   beta = 0.10, # type II error 
   p1 = 0.6, # rate of effectiveness of the new vaccine  
   p2 = 0.65, # rate of effectiveness of the standard vaccine 
   k = 1,  # ratio of sample size for vaccinated and unvaccinated groups 
   delta = -0.05, # difference in the rates of effectiveness of two vaccines 
   margin = -0.10) # non-inferiority margin 

R output 
1601.439 

Conclusion 
The sample size returned is the sample size per group. Hence, a sample of 1 602 vaccinated children with the new 
vaccine, and 1 602 vaccinated children with the standard vaccine need to be included in the study to have 90% 
power to demonstrate non-inferiority of the new vaccine. This results in a total sample size of 3 204 children. 

Two-sample proportion test for non-inferiority using odds ratio 
Often the aim is to investigate the relative effect of the treatments for the disease under study. Odds ratio has been 
frequently used to assess the association between a binary treatment variable and a binary disease outcome [10]. 

Scenario 2 is used to illustrate the sample size calculation for a non-inferiority test. In order to perform the 
calculation, the function ‘RelativeRisk.NIS’ from the R package ‘TrialSize’ is used.  

Disease experts from ECDC want to compare two different vaccines which are used in vaccination centers in the 
country X. It is of interest to establish non-inferiority, in terms of the odds ratio (OR), of the new vaccine in 
protecting vaccinated children against the medically attended acute respiratory infection (MAARI) caused by the 
influenza virus, as compared to the standard vaccine. Previous data suggest the OR to be equal to 1.45 (based on 
information that 3.5% of children receiving the standard vaccine experienced MAARI, and the experts expect 5% 
of children receiving the new vaccine to experience MAARI). For the new vaccine to be non-inferior to the standard 
vaccine, it is specified that an OR not lower than 0.90 is considered as a non-clinically important difference.  

Using a one-sided 5% significance level, how many children should be sampled at random such that the experts 
can investigate non-inferiority of the new vaccine with 90% power? 

Theoretical background 
For a non-inferiority test, the following hypotheses are used: 

 H0: OR ≤ δ’ versus H1: OR > δ’ 

where δ’ is the non-inferiority margin for the OR. The above hypotheses can be rewritten as: 

H0: log(OR) ≤ δ versus H1: log(OR) > δ 

where δ is the non-inferiority margin in natural logarithmic scale, and log refers to the natural logarithm. When δ < 
0, the rejection of the null hypothesis indicates non-inferiority of the treatment against the control. 

Chow et al. (2018) [10] proposed the following formula to determine the sample size required in a non-inferiority 
study using the odds ratio approach: 

 
 

The following quantities are used in the equation: 

• 𝑛𝑛𝐶𝐶= the required sample size in the control group; 
• 𝑛𝑛𝑇𝑇= the required sample size in the treatment group; 
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• 𝑘𝑘 = 𝑛𝑛𝑇𝑇
𝑛𝑛𝐶𝐶

 = the ratio between the sample size in the treatment and control groups; 
• 𝑧𝑧1−𝛼𝛼= the value from the standard normal distribution corresponding to the desired significance level (α).  

Use 𝑧𝑧1−𝛼𝛼 = 1.64  for one-sided hypothesis at a 5% significance level; 
• 𝑧𝑧1−𝛽𝛽 = the value from the standard normal distribution corresponding to the desired study power (1-β).  

Use  𝑧𝑧1−𝛽𝛽 = 0.84 for 80% power, and  𝑧𝑧1−𝛽𝛽 =1.28 for 90% power; 
• 𝑝𝑝𝑇𝑇 = the population response rates in the treatment group; 
• 𝑝𝑝𝐶𝐶 = the population response rates in the control group; 
• OR = odds ratio between the treatment and control; calculated as OR = pt(1-pc)/pc(1-pt). 
• 𝛿𝛿 = the non-inferiority margin in log scale. 

Implementation of the scenario in R 
The formula based on the odds ratio approach is implemented in the function ‘RelativeRisk.NIS’ of the R 
package ‘TrialSize’ in R software. The function requires the specification of the following arguments:  

• alpha corresponds to the desired one-sided significance level. In the scenario, this argument is assigned 
the value of 0.05. 

• beta corresponds to the type II error (β) (power = 1 – β). In the scenario, this argument is assigned the 
value of 0.1. 

• or corresponds to the odds ratio between the treatment and control groups.  
• k corresponds to the ratio of sample size in the treatment and control groups. In the scenario, it is assigned 

the value of 1 such that the same number of children receive treatment (with the new vaccine) and control 
(with the standard vaccine). 

• pt corresponds to the population response rate in the treatment group. In the scenario, pt is assigned the 
value of 0.05.  

• pc corresponds to the population response rate in the control group. In the scenario, pc is assigned the 
value of 0.035. 

• margin corresponds to the non-inferiority margin in log scale. In the scenario, the non-inferiority margin 
for the OR was 0.90; this gives a non-inferiority margin for log(OR)=log(0.90)=-0.10. Therefore, this 
argument is assigned the value of -0.10. 

R code for sample size calculation 
# Setting: 
# N = infinite population size 
# Proportion (pt) = 0.05 
# Proportion (pc) = 0.035 
 
# Significance level (alpha) = 0.05 (one-sided) 
# Power = 0.90 or beta = 0.10 
  
# Calculate the odds ratio 
pt<-0.05 
pc<-0.035 
OR <- (pt*(1-pc))/(pc*(1-pt)) 
 
RelativeRisk.NIS(alpha = 0.05, # significance level 
                     beta = 0.10, # type II error 
                     or = OR,  # odds ratio 
                     k = 1,  # ratio of sample size for vaccinated and unvaccinated groups 
                     pt = pt,  # probability of outcome in the vaccinated group 
                     pc = pc,  # probability of outcome in the unvaccinated group 
                     margin = -0.10) # non-inferiority margin in log-scale  
 

R output 
1944.579 

Conclusion 
The sample size returned is the sample size per group. Hence, a total of 3 890 vaccinated children, consisting of 1 
945 children vaccinated with the new vaccine, and 1 945 vaccinated with the standard vaccine, need to be included 
in the study to have 90% power to demonstrate non-inferiority of the new vaccine.  
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3.3 Sample size calculation for two categorical outcomes 
Scenario 3 (Section 2.4.3) is used to illustrate the sample size calculation for testing independence between 
two categorical variables. The function ‘pwr.chisq.test’ from the R package ‘pwr’ will be used to 
perform the calculations. 

In the COVID-19 pandemic, infected individuals showed a wide range of symptoms which can be classified into 
three categories: ‘mild’, ‘moderate’, or ‘severe’. ECDC wants to investigate whether there is a difference in disease 
severity between men and women.  

The data can be organised in a two-way contingency table. A chi-squared test is often employed to investigate 
independence between the two categorical variables in the contingency table (null hypothesis). It is expected that 
more men have ‘mild’ symptoms, whereas women have more ‘moderate’ and ‘severe’ symptoms. The cell 
proportions given in Table 2 below reflect this hypothesis. These proportions are assumed for the alternative 
hypothesis that there is a dependence between the two categorical variables. The cell proportions are obtained 
with respect to the total study size, e.g. the proportion of 0.3 in the upper left cell in Table 2 represents the 
proportion of men with mild symptoms among all the individuals in the study. Both genders comprise 50% of the 
individuals for the survey.  

Using the chi-squared test, the investigator wants to be able to detect the association between gender and disease 
severity with a power of 80% and a 5% significance level. What is the sample size needed to achieve this? 

Table 2. Expected proportions under the alternative hypothesis of non-independence between 
gender and severity 

    Severity   

   Mild Moderate Severe total 

Gender Men 0.3 0.1 0.1 0.5 

Women 0.1 0.2 0.2 0.5 

  Total 0.4 0.3 0.3 1 

Theoretical background 
A contingency table is a tabular representation of two categorical variables. Here, we consider a contingency table 
of two categorical variables with rows i=1,…,r and columns j=1,…,c.  
Each cell in the table represents the observed frequencies for a particular combination of the categories of the two 
variables. Let 𝑜𝑜𝑖𝑖𝑖𝑖 be the observed frequencies for cell ij. 
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Table 3. Illustration of an r x c contingency table for two categorical variables 

  Variable 2  

  1 2 ∙∙∙ c total 

Variable 1 1 𝑜𝑜11 𝑜𝑜12 ∙∙∙ 𝑜𝑜1𝑐𝑐 𝑛𝑛1⋅ 

2 𝑜𝑜21 𝑜𝑜22 ∙∙∙ 𝑜𝑜2𝑐𝑐 𝑛𝑛2⋅ 

 ְ  
∙∙∙ 

  

r 𝑜𝑜𝑟𝑟1 𝑜𝑜𝑟𝑟2 ∙∙∙ 𝑜𝑜𝑟𝑟𝑟𝑟  𝑛𝑛𝑟𝑟⋅ 

 Total 𝑛𝑛⋅1 𝑛𝑛⋅2 ∙∙∙ 𝑛𝑛⋅𝑐𝑐  𝑛𝑛 

 

The corresponding cell proportions, as provided in Table 2, can be calculated as  𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑜𝑜𝑖𝑖𝑖𝑖 /𝑛𝑛 with row and sum 
proportions written as 𝑝𝑝𝑖𝑖. and 𝑝𝑝.𝑗𝑗, respectively. Under the null hypothesis, when the two categorical variables are 
independent, the expected frequency 𝑒𝑒𝑖𝑖𝑖𝑖 is equal to:   

 

where 𝑛𝑛𝑖𝑖. and 𝑛𝑛.𝑗𝑗 are the totals for the ith row and jth column, respectively.  

There is no closed form sample size formula for this setting. The calculation involves the estimation of a non-
centrality parameter, for which there is no analytical formula, but it can be estimated using software. To obtain the 
sample size, the software requires the following:  

• Cell proportions 𝑃𝑃0𝑖𝑖𝑖𝑖under the null hypothesis, which can be calculated as: 
𝑃𝑃0𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑖𝑖𝑖𝑖 /𝑛𝑛 = 𝑝𝑝𝑖𝑖. × 𝑝𝑝.𝑗𝑗 

• Cell proportions 𝑃𝑃1𝑖𝑖𝑖𝑖under the alternative hypothesis. 
• The effect size w, defined as: 

 
• the degrees of freedom (r-1)(c-1) 

Implementation of the scenario in R 
For the scenario, the cell proportions (𝑃𝑃1𝑖𝑖𝑖𝑖’s) in Table 2 are used for the alternative hypothesis. The expected 
proportions under the null hypothesis of independence of disease severity and gender (𝑃𝑃0𝑖𝑖𝑖𝑖′s) are calculated via the 
above expression for the expected frequencies. These  are provided in Table 4. For example, the expected 
proportion for men with mild symptoms is equal to 0.5 × 0.4 = 0.2. 
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Table 4. Expected proportions under the null hypothesis independence 

    Severity   

   Mild Moderate Severe total 

Gender Men 0.2 0.15 
0.15 

0.5 

Women 0.2 0.15 0.15 0.5 

  Total 0.4 0.3 0.3 1 

 
Given these proportions under the null and alternative hypotheses, the effect size w equals 0.17. Using the chi-
squared test, the investigator wants to detect this effect size of 0.17 with a power of 80% and a 5% significance 
level. What is the sample size needed to achieve this? 

The formula above is implemented in the function ‘pwr.chisq.test’ of the package ‘pwr’ in R. The function 
requires the specification of the following arguments: 

• w corresponds to the effect size (ES). In the scenario, the effect size is 0.17. 
• sig.level is the specified significance level of 𝛼𝛼 = 5%. 
• power is the power (1- 𝛽𝛽) to detect an association with a specified effect size. In the scenario, the 

investigators specified a power of 0.8. 
• df corresponds to the degrees of freedom (r-1)(c-1) where r is the number of rows and c the number of 

columns of the contingency table. In the scenario, the data results in a 2x3 contingency table, hence the 
degree of freedom is (2-1)*(3-1)=2. 

R code for sample size calculation 
# Setting:  
# Effect size = 0.17 
# Significance level= 0.05 
# Power = 0.80 
# Degrees of freedom = 2 
 
# The function to calculate the sample size:  
pwr.chisq.test(w=0.17,                 # effect size  
                    sig.level= 0.05,  # significance level 
                    power = 0.80,     # power of the test 
                    df = 2              # degrees of freedom 
) 

R output 
     Chi-squared power calculation  
 
              w = 0.17 
              N = 333.3802 
             df = 2 
          sig.level = 0.05 
          power = 0.8 
 
NOTE: N is the number of observations 
 

Conclusion  
With an 80% power, we need a sample size of 334 – 167 men and 167 women – to detect a difference in disease 
severity between the genders. Note that in the R output of this function, N is the total sample size and not the 
population size.  
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3.4 Continuous outcome  
3.4.1 Sample size calculation to estimate a population mean with a 
desired precision 
Scenario  (Section 2.4.4) is used to illustrate the sample size determination for a continuous population parameter 
with a specified level of confidence and precision using simple random sampling, and demonstrate the use of the 
function ‘epi.sssimpleestc’.  

ECDC wants to organise a survey among 450 laboratories to estimate the average cost price of a PCR test across 
the EU/EEA, to diagnose individuals with a SARS-CoV-2 infection.  ECDC anticipates the average cost price to be 
around EUR 70 and the standard deviation of the cost price to be EUR 15. They wish to construct a two-sided 95% 
confidence interval for the mean, so that they are 95% confident that the expected cost price is within 10% of the 
true cost price.  

From how many laboratories, sampled at random, should ECDC collect their cost price for a PCR test to be 95% 
confident that the estimate is within 10% of the true cost?     

Theoretical background  
The sample size calculations for the estimation of a population mean with desired precision is given by the formula 
below [3]:  

 
The following quantities are used in the equation: 

• n = the required sample size; 
• 𝑧𝑧1−𝛼𝛼

2
= the value from the standard normal curve corresponding to the desired confidence level (1-α). Use  

𝑧𝑧1−𝛼𝛼
2
= 1.96 for a 95% confidence level; 

• N = the population size; 
• 𝑉𝑉𝑥𝑥2= the relative variance for the variable calculated as the squared standard deviation (𝜎𝜎𝑥𝑥2) divided by the 

squared population mean (𝑥𝑥2), i.e.  𝑉𝑉𝑥𝑥2 = 𝜎𝜎𝑥𝑥2/𝑥𝑥2; 
• 𝜀𝜀𝑟𝑟= the relative error. 

The formula above generates the sample size, n, to estimate the average with a desired precision. In Section 2.1.4, 
a detailed explanation of the terminology used to indicate the precision and the error has been given.  Applied to 
this scenario, a relative error of 10% means that we allow a deviation of 10% from EUR 70, thus from (1-0.1)xEUR 
70=EUR 63 to (1+0.1)xEUR 70=EUR 77. The formula above will then return the number of laboratories needed to 
be 95% confident that the expected cost price from the study will be anywhere between EUR 63 and EUR 77, or 
within 10% from the population mean. 

Implementation of the scenario in R 
The formula above is implemented in the function ‘epi.sssimpleestc’ of the package ‘epiR’ in R software. The 
function requires the specification of the following arguments:  

• N, i.e. the population size. The function assumes a default population size of 1 000 000.  The default value 
can be used if the assumption of an infinite population is justifiable. If the study population is smaller, then 
the accurate number of the study population under investigation can be entered here. For the scenario, this 
would imply a study population of 450 laboratories in the EU/EEA. 

• xbar corresponds to the expected mean of the continuous variable. In the scenario, the average cost price 
of a PCR test is estimated to be EUR 70.  

• sigma corresponds to the expected standard deviation of the data. The expected standard deviation of the 
cost price is EUR 15 and is entered for this argument. The arguments xbar and sigma are used to 
calculate the relative variance 𝑉𝑉𝑥𝑥2 . 

• The precision is specified by the arguments error and epsilon. In the scenario, the precision is expressed 
as a relative error of 10%. This is indicated by specifying ‘relative’ for the error in combination with a value 
of 0.1 in the argument epsilon. Note that in the scenario, a relative error of 10% corresponds to an 
absolute error of EUR 7(70*0.1 = 7). Thus, the sample size can also be obtained by specifying error equal 
to ‘absolute’ and epsilon equal to 7.    

• Since the investigator of the study is interested in a 95% confidence level, the argument conf.level will 
take the value 0.95.  

 



Sample size guidance for surveillance data TECHNICAL GUIDANCE 

32 
 
 

R code for sample size calculation 
# Setting:  
# N= 450 
# Mean = 70 
# Standard deviation = 15 
# Relative error = 0.10 (or absolute error = 7) 
# Confidence level = 0.95 
 
# The function to calculate the sample size:  
epi.sssimpleestc(N=450,   # population size 
                 xbar=70,           # the average cost price of a PCR test 
                 sigma= 15,          # standard deviation of the cost price of a PCR test 
                 epsilon= 0.10,        # tolerable error 
                 error = "relative", # the error we refer to is a relative error 
                 conf.level= 0.95 # confidence level 
) 

R output 
[1] 18 

Conclusion 
A total of 18 laboratories needs to be sampled (at random) from the 450 available laboratories to meet the 
requirements of the survey, i.e. ECDC is 95% confident that the estimated mean cost price of a SARS-CoV-2 PCR 
test is within 10% of the true population mean. 

3.4.2 Sample size calculation for one population mean hypothesis 
testing 
Scenario 4 is used to illustrate the sample size determination for a continuous parameter that is compared to a 
hypothesised value using simple random sampling. In this section, the use of the function ‘pwr.t.test’ is 
demonstrated.  

Similar to the previous section, ECDC wants to conduct a survey among laboratories throughout the EU/EEA, to 
estimate the average cost price of a PCR test to diagnose individuals with a SARS-CoV-2 infection. ECDC wishes to 
detect a difference of EUR 5 between the study population mean and the hypothesised value of EUR 70. The 
population standard deviation of the cost price is EUR 15.  

In this setting, ECDC is interested in a deviation of EUR 5 in either direction of the population mean (= two-sided 
test). The investigator wishes to be 90% sure of detecting a difference (= power of the test), assuming that a two-
sided test is carried out at a significance level of 5%.  

From how many laboratories, sampled at random, should ECDC collect their cost price for a PCR test to achieve the 
desired power to test this hypothesis? 

Theoretical background  
Here, the hypotheses of interest are the null hypothesis (H0: μ = μ0) that the population mean (μ) equals the 
hypothesised value (μ0), and the alternative hypothesis (H1: μ ≠ μ0) that the population mean differs from the  
hypothesised value. Alternatively, the interest of the investigator could also be ‘one-sided’ i.e. the mean is smaller 
than the hypothesised value (H1: μ < μ0), or larger than the hypothesised value (H1: μ > μ0). The formula for 
determining the sample size for a one-sample mean used in hypothesis testing is given below [12]: 

 
 

The following quantities are used in the equation: 

• n = the number of units in the sample; 
• 𝑧𝑧1−𝛼𝛼

2
= the value from the standard normal distribution corresponding to the desired significance level (α).  

Use 𝑧𝑧1−𝛼𝛼
2
 = 1.96 for a two-sided hypothesis at a 5% significance level; 

• 𝑧𝑧1−𝛽𝛽 = the value from the standard normal distribution corresponding to the desired study power (1-β).  
Use  𝑧𝑧1−𝛽𝛽 = 0.84 for 80% power, and  𝑧𝑧1−𝛽𝛽 =1.28 for 90% power; 

• 𝜎𝜎= the assumed population standard deviation; 
• 𝑑𝑑= the difference between the population mean and the hypothesised value (μ - μ0). 
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Implementation of the scenario in R 
The formula above is implemented in the function ‘pwr.t.test’ of the package ‘pwr’ in R software. The 
function requires the specification of the following arguments:  

• d corresponds to the effect size (ES). The effect size needs to be computed by the user as the standardised 
difference between the mean and the hypothesised value, i.e. as 𝜇𝜇−𝜇𝜇0

𝜎𝜎
 where 𝜇𝜇 is the population mean, 𝜇𝜇0 is 

the hypothesised value, and 𝜎𝜎 is the standard deviation of the outcome. The calculated effect size, in the R 
code below, is saved in an object called ES and is then passed to the argument d. 

• The investigator required a significance level of 5%. Therefore, 0.05 is passed to the argument sig.level. 
• power corresponds to 0.9, as the investigator wanted to be 90% sure of detecting a difference. 
• type corresponds to the type of test (one- or two-sample test). Since information on the price will only be 

gathered from laboratories across the EU/EEA, this is a one-sample test and type gets assigned the value 
‘one.sample’. If the investigator wants to evaluate whether there is a difference in the average cost 
price of PCR tests in laboratories of two different countries, then the argument type gets assigned the 
value ‘two.sample’ (see the Section 3.4.3). 

• alternative corresponds to the alternative hypothesis that is of interest. Depending on the hypothesis test 
that is under investigation, the argument alternative can take several values: ‘two.sided’, 
‘greater’ or ‘less’. A two-sided alternative hypothesis is in place when the investigator is interested in 
a difference and not in the direction of this difference (𝐻𝐻1: 𝜇𝜇 ≠ 𝜇𝜇0), which is the case in the scenario. An 
alternative hypothesis can be ‘greater’ (𝐻𝐻1: 𝜇𝜇 > 𝜇𝜇0) or ‘less’ (𝐻𝐻1: 𝜇𝜇 < 𝜇𝜇0).  

R code for sample size calculation 
# Setting:  
# Infinite population size - the function does not use N and assumes an infinite population (see later for finite 
population) 
# Mean difference = 5 # Difference between population mean (𝜇𝜇) and hypothesised value (𝜇𝜇0)  
# Standard deviation = 15 
# Power = 0.90 
# Significance level = 0.05 
# Two-sided test 
 
 
# Calculate the Effect Size (ES) 
# Formula ES = Mean difference/Standard deviation 
ES <- 5/15 
 
 
# The function to calculate the sample size 
pwr.t.test(d= ES,   # effect size 
           sig.level = 0.05,           # significance level 
           power = 0.90,               # power of the test 
           type = "one.sample",       # type of test (one sample) 
           alternative = "two.sided"    # two-sided hypothesis 
) 

R output  
     One-sample t-test power calculation  
 
              n = 96.50801 
              d = 0.3333333 
      sig.level = 0.05 
          power = 0.90 
    alternative = two.sided 

Conclusion 
When the population size is infinite, a total of 97 laboratories needs to be sampled (at random) to meet the 
requirements of the survey, i.e. ECDC is 90% confident of detecting a difference, assuming that a two-sided test is 
carried out at a significance level of 5%. Note that if a fractional value is proved in the R output, then it is 
important to round that number upward. In the R code, the sample size provided is 96.50801, which is rounded 
upward to the required sample size of 97 laboratories. 
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R code for plot of power as function of sample size 
We can visualise the changes in power using the ‘plot’ function. 

# Save the analysis into an object:  
one.mean <- pwr.t.test(d= ES, sig.level = 0.05, power = 0.90,  
                       type = "one.sample", alternative = "two.sided") 
 
plot(one.mean) 

R output 
Figure 6. Power calculations as a function of sample size for one population mean 

 

Conclusion 
The power increases with increasing sample size. From the plot, it can be observed that there is a steep increase in 
the power for increases in the sample size, if the sample size is smaller than 97. The gain in power by increasing 
the sample size beyond the optimal sample size of 97 is rather limited. 

R code for finite population size 
If the population size is not infinite but rather finite, then an extra step needs to be performed after calling the 
function ‘pwr.t.test’ in R. Let us assume that in the scenario used previously, the only quantity that changes is 
the population size N. The (finite) population size now consists of 450 laboratories. In order to correct for this finite 
sample size, use the function ‘correct.N’ (see Annex for the source file). The function has two arguments: 

• n, i.e. the sample size obtained from the appropriate R function. For this scenario, n would get the value 
96.50801. 

• N, i.e. the population size. For this scenario, N would get the value 450. 

For details on the formula used to correct for a finite sample size, see Section 3.1.2. 
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# If the population size is no longer infinite but rather finite,  
# A third step needs to be undertaken in order to obtain the sample size 
 
# Finite population size correction 
correct.N(n=96.50801, # Sample size obtained from the function, in this case pwr.t.test 
                  N=450      # Population size 
                  ) 

R output  
[1] 79.46563 

Conclusion 
If the population is infinite, a total of 97 laboratories are needed to meet the requirements of the survey. If 
the population only consists of 450 laboratories which can be sampled, then it is sufficient to sample 80 
laboratories at random.  

3.4.3 Sample size calculation for two population mean hypothesis 
testing 

Scenario 4 is used to illustrate the sample size determination for testing differences in the means of two 
independent samples, using simple random sampling. It relies on the use of the function ‘pwr.t.test’ (see 
Section 3.4.2 for a detailed explanation of the function).  

This scenario is similar to the one discussed in Section 3.4.2. The distinction now is that ECDC wants to conduct a 
survey to estimate the difference between the average cost price of a PCR test in the country Y (µ1) and the 
average cost price of a PCR test in country Z (µ2) to diagnose an individual with a SARS-CoV-2 infection, assuming 
an infinite population. Again, ECDC wants to detect a mean difference of EUR 5 between the two populations. The 
population standard deviation of the cost price in both the countries is assumed to be the same (EUR 15). ECDC 
believes that the difference in the average cost between the two populations is EUR 5 (= two-sided test). ECDC 
wants to be 90% sure of detecting a difference (= power of the test), assuming that a two-sided test is carried out 
at a significance level of 5%.  

From how many laboratories in the country Y and the country Z should ECDC collect the cost price for a PCR test 
to achieve the desired power to test this hypothesis? 

Theoretical background  
In Sections 3.4.1 and 3.4.2, the procedure for estimating the required sample size for a given precision and 
hypothesis test was discussed. The same concepts and procedures will be used in estimating the sample size in 
order to estimate differences between the two population means. Consider the null hypothesis in which the two 
population means are equal (H0: µ1 = µ2). The alternative hypothesis can either be one-sided (H1: µ1 - µ2 > 0 or 
H1: µ1 - µ2 <0) or two-sided (H1: µ1 - µ2 ≠0). The formula to determine the required sample size for estimating a 
difference between two (independent) populations means is as follows [12]: 

  
 

The following quantities are used in the equation: 

• n = the number of samples for each population; 
• 𝑧𝑧1−𝛼𝛼

2
= the value from the standard normal distribution corresponding to the desired significance level (α).  

Use 𝑧𝑧1−𝛼𝛼
2
 = 1.96 for a two-sided hypothesis at a 5% significance level; 

• 𝑧𝑧1−𝛽𝛽 = the value from the standard normal distribution corresponding to the desired study power (1-β).  
Use  𝑧𝑧1−𝛽𝛽 = 0.84 for 80% power, and  𝑧𝑧1−𝛽𝛽 =1.28 for 90% power; 

• 𝜎𝜎= the population standard deviation. It is assumed that the population standard deviations (𝜎𝜎) are the 
same in both populations and that 𝜎𝜎 is known. An estimate for 𝜎𝜎 can be obtained from literature, previous 
surveys or a pilot study; 

• 𝑑𝑑= the minimum difference that is considered to be significant between the two population means (µ1 - µ2). 

 
 
 



Sample size guidance for surveillance data TECHNICAL GUIDANCE 

36 
 
 

Implementation of the scenario in R 
The formula above is implemented in the function ‘pwr.t.test’ of the package ‘pwr’ in R software. Details on the 
arguments of the function are provided in Section 3.4.2. The scenario considered in this section is a ‘two-sample’ 
problem. Only one argument in the function ‘pwr.t.test’ will change its value as compared to the previous 
section:  

• type corresponds to the type of test that is being performed (one- or two-sample test). Since the price in 
two countries are compared, this is a two-sample problem and type gets assigned the value ‘two.sample’. 
This is in contrast with the value ‘one.sample’ that was assigned to type in the scenario in Section 3.4.2. 

• Moreover, the effect size d that is used here is the standardised effect size, which is the difference between 
the two means divided by the standard deviation.  

R code for sample size calculation 
# Setting:  
# Infinite population size - the function does not use N and assumes an infinite population (see later for finite 
population) 
# Mean difference = 5 # Difference between population mean of the country Y (µ1) and the country Z (µ2)  
# Standard deviation = 15 
# Power = 0.9 
# Significance level = 0.05 
# Two-sided test 
 
 
# Calculate the Effect Size (ES) 
# Formula ES = (µ1-µ2)/Standard deviation 
ES <- 5/15 
 
 
# The function to calculate the sample size 
pwr.t.test(d= ES,                     # effect size 
           sig.level = 0.05,           # significance level 
           power = 0.90,               # power of the test 
           type = "two.sample",       # type of test (two sample) 
           alternative = "two.sided"    # two-sided hypothesis 
) 

R output  
     Two-sample t-test power calculation  
 
              n = 190.0991 
              d = 0.3333333 
      sig.level = 0.05 
          power = 0.90 
    alternative = two.sided 
 
NOTE: n is number in each group 

Conclusion  
For an infinite population size, a total of 382 laboratories, i.e. 191 laboratories in the country Y and 191 
laboratories in the country Z, need to be sampled at random, so that ECDC is 90% confident of detecting a 
difference, given the study design. It is important to note that the function ‘pwr.t.test’ will return the sample 
size per group when the type of test is a two-sample one.  

R code to make plot of power as function of sample size 
We can visualise the changes in power using the ‘plot’ function. 

# Save the analysis into an object:  
two.means <- pwr.t.test(d= ES, sig.level = 0.05, power = 0.90,  
                       type = "two.sample", alternative = "two.sided" ) 
 
plot(two.means) 
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R output 
Figure 7. Power calculations as a function of sample size for two population mean 

 

Conclusion 
The power increases with increasing sample size. From the plot, it can be observed that there is a steep increase in 
the power for increases in the sample size, if the sample size per group is smaller than 191. The gain in power by 
increasing the sample size beyond the optimal sample size of 191 per group is rather limited. 

R code for finite sample size correction  
If the population is finite, then an extra step needs to be performed after calling the function ‘pwr.t.test’ in R. 
Suppose that the (finite) population size consists of 100 laboratories. In order to correct for this finite sample size, 
use the function contained in the R script, called ‘correct.N’.  The function has two arguments: 

• n, i.e. the sample size obtained from the appropriate R function. For this scenario, n gets the value 382. 
• N, i.e. the population size. For this scenario, N gets the value 100. 

For details on the formula used to correct for a finite sample size, see Section 3.1.2. 

# If the population size is no longer infinite but rather finite,  
# A third step needs to be undertaken in order to obtain the sample size 
 
# Finite population size 
correct.N(n=382, # Sample size obtained from the function, in this case pwr.t.test 
          N=100 # Population size 
) 

R output  
[1] 79.25311 

Conclusion  
This value is the required total sample size, i.e. for the two groups together. For a finite population size of 
450 laboratories, it is sufficient to sample 208 laboratories in total, i.e. 104 laboratories in each country, at 
random to meet the survey requirements. It is important to round the corrected sample size to the next 
highest even number, yielding a total sample size of 80, implying 40 units/laboratories to be sampled in the 
country Y and 40 in the country Z.  
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4 Sample size calculations for cluster 
sampling 
4.1 Key concepts for cluster sampling 
This section focuses on sample size calculations for cluster sampling. Firstly, the definition of cluster sampling will 
be introduced. Secondly, the sample size calculation for a one-stage cluster sampling will be illustrated with the 
example of the cost price of a PCR test (Scenario 4) and influenza vaccines for MAARI (Scenario 2). 

Cluster sampling is a sampling method that can be used when, for any reason, the simple random sampling 
method is not applicable. To sample individuals from a country’s population, one can select regions (clusters) and 
then select people from these regions. So, for cluster sampling, the population is divided into multiple groups 
(clusters), and clusters are selected at random for the study.  

We will address one-stage and two-stage cluster sampling. In one (or single)-stage cluster sampling, sampling is 
done just once. In two-stage cluster sampling, a second stage is added; i.e. a number of units of the sampled 
clusters are selected for the study. For example, a survey among schoolchildren will most likely not select 
schoolchildren via a simple random sampling method. This would be inefficient as many schools will be involved. 
Cluster sampling, where schools are the clusters, will be easier to implement and cost less time and money. A one-
stage cluster sampling will randomly select a number of schools from a list of all schools, and then include all the 
students from these selected schools. A two-stage cluster sampling adds one more stage of sampling. Within 
every school selected for the study, a number of children are selected.  When using cluster sampling, we need to 
consider that, compared to simple random sampling, children in the same school/cluster are likely to be somewhat 
similar to one another on account of several different characteristics (such as, socio-economic backgrounds). This 
implies that adding another child from the same school does not add new information. However, adding another 
child using simple random sampling (so a child from a different school) might add new information.  

Since units in the same cluster are more alike, the variability within clusters is smaller. Information obtained by a 
cluster sample is typically less than in a random sample of the same size. As a result, there is a loss of efficiency.  

A way of summarising the amount of information in the data is via the effective sample size, defined as 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑛𝑛/𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, with 𝑛𝑛 being the total sample size and 𝑑𝑑𝑑𝑑𝑑𝑑𝑓𝑓 the design effect. The design effect quantifies the loss of 
efficiency. For example, a design effect of 3 means that the sample size needed using a cluster sampling is three 
times higher than the sample size that would be needed with simple random sampling. An alternative 
interpretation is that only ⅓ of the sampled units would be needed to measure a given statistic (proportion or 
mean) with the same precision, if a simple random sample was used instead of the cluster sample with a design 
effect of 3. The design effect is a function of the intracluster correlation (𝜌𝜌)  and the cluster sizes (b is the size of 
the clusters for a one-stage cluster design): 

𝑑𝑑𝑑𝑑𝑑𝑑𝑓𝑓 = 1 + (𝑏𝑏 − 1)𝜌𝜌. 
The design effect increases with increasing cluster sizes and increasing intraclass correlation. The intracluster 
correlation coefficient is the ratio of the variance between clusters and the total variance (i.e. the sum of the 
variance within and between clusters). In other words, it is the proportion of the variance that can be attributed to 
the variability between clusters: 

 
where 

𝜎𝜎𝐵𝐵
2= variance between clusters; 

𝜎𝜎𝑊𝑊
2= variance within clusters. 

 

Let us consider two special cases. On the one hand, if all the values within a cluster are identical, the variance 
within clusters (𝜎𝜎𝑊𝑊2) will be 0, and therefore the intracluster correlation ρ will be 1. This implies that the design 
effect will be as high as the number of sampling units per cluster (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑏𝑏). Therefore, the effective sample size 
will be equal to the number of clusters selected (𝑛𝑛𝑛𝑛𝑛𝑛𝑓𝑓 = 𝑛𝑛/𝑏𝑏). On the other hand, if the variance between clusters 
is much smaller than the variance within clusters, i.e. the intracluster correlation is close to 0, then the design 
effect will be close to 1. If the design effect from clustering is very large, then increasing the number of sampled 
clusters with a smaller sample size should be considered.   
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The design effect must be considered in the sample size calculation. There are two ‘problems’ with this. Firstly, 
design effects vary from survey to survey and can even vary within a survey. For example, if the sampling unit is a 
school, then the design effect will be higher for variables that are common for all the students at the school, and 
lower for variables that are different for different students. Secondly, the design effect is often not known prior to 
the study, unless previous studies have been conducted on the same outcome. Literature and small pilot studies 
can be used to come up with a reasonable estimate of the design effect to be used in the sample size calculation.   

To illustrate how to use the design effect in sample size calculations, consider Scenario 4. The goal of the study is 
to estimate the average cost price of a PCR test across the EU/EEA. The average cost price is anticipated to be 
around EUR 70 with a standard deviation of EUR 15. The sample size calculation for this example, when using 
simple random sampling (𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠), is discussed in Section 3.4.1. A total of 18 laboratories needs to be sampled (at 
random) to be 95% confident that the estimated mean cost price of a SARS-CoV-2 PCR test is within 10% of the 
true population mean.  

Now suppose that for practical reasons, a one-stage cluster sampling method has to be used. To limit the travel 
cost to the laboratories, they are grouped in fives based on their geographical location (region). First, some regions 
(clusters) are selected, and for each of the selected regions the five laboratories are included. Based on previous 
studies, a realistic estimate for the intracluster correlation coefficient (𝜌𝜌) is 0.2. The design effect for the one-stage 
cluster sampling equals  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1 + (𝑏𝑏 − 1)𝜌𝜌 = 1 + (5-1)0.2 = 1.8. The sample size needed when using the one-
stage cluster sampling method therefore equals:  

𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 × 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠 = 1.8 × 18 = 33. 
 

So, a total of 33 laboratories needs to be sampled, with five laboratories per cluster. This implies seven regions 
(33/5 = 6.6) have to be sampled for the study. The larger sample size is required to compensate for the loss of 
precision as a result of the positive correlation among the laboratories in a cluster (𝜌𝜌=0.2). Some more detailed 
calculations of the design effect for one-stage and two-stage cluster designs, and  clusters of equal and unequal 
size, are provided below: 

• One-stage cluster design 
− If all clusters have the same size (b), the design effect is obtained as  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1 + (𝑏𝑏 − 1)𝜌𝜌. 
− If the clusters are of unequal sizes, the design effect is obtained as 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1 + ((𝐶𝐶𝑉𝑉2 + 1)𝑏̄𝑏 − 1)𝜌𝜌, 

with 𝑏̄𝑏 as the average cluster size and CV as the coefficient of variation for the number of units per 
cluster.  

• Two-stage cluster design   

The population has A clusters, and every cluster has B units. In the first stage, the clusters are selected, 
and in the second stage B units are sampled from every selected cluster. The sampling fractions for the first 
and second stage are thus 𝑓𝑓1 = 𝑎𝑎

𝐴𝐴
 and 𝑓𝑓2 = 𝑏𝑏

𝐵𝐵
. The design effect is given by 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = (1 − 𝑓𝑓1) 𝑓𝑓2[ 1 + (𝐵𝐵 −

1)  𝜌𝜌]  + (1 − 𝑓𝑓2) 𝜌𝜌 [13]. In practice, the sampling fraction for the first stage is often small (𝑓𝑓1 ≈ 0) and the 
expression then simplifies to 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1 +  (𝑏𝑏 − 1) 𝜌𝜌.     

For the two-sample setting, where the aim is to test the difference between the means or proportions of the 
two subgroups, two scenarios can be in place:  

• The two samples/subgroups are in different sets of clusters (independent samples). This will be the case 
when the aim is to compare two regions or two countries. 

• The two samples/subgroups ‘cut across’ the sample and tend to be found in all or many of the clusters. This 
will be the case when for example, the subgroups are men and women. When households are sampled, the 
household/cluster will have men and women.   

Under the assumption that the variances of the outcome are the same in the two subgroups, the following 
inequality holds for the design effect for the difference between two means [14].  

 

 
where, 𝑛𝑛1and 𝑛𝑛2are the sample sizes of subgroup 1 and subgroup 2,  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷( 𝑦𝑦1 − 𝑦𝑦2)is the design effect for the 
difference between the two means, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 � 𝑦𝑦1�, and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷( 𝑦𝑦2) are the design effects of the means of the two 
subgroups. So, the design effect for the difference between two subgroup means or proportions is greater than 1, 
but less than that obtained when the two subgroups are treated as independent.  
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Design effects from clustering are typically smaller for differences in means/proportions than for overall 
means/proportions. When the subgroups are in different sets of the clusters (e.g. when comparing regions), the 
upper bound applies. If the design effect and sample sizes are similar for the two means/proportions, the design 
effect for the difference will also be similar to the design effect of the means/proportions. 
For other settings and more complex sampling designs, the procedure of multiplying the sample size obtained 
using simple random sampling by the design effect can still be used. But it is important to reflect the complexity of 
the design and use the design effect for the statistic of interest.   

4.2 Example of cluster sampling  
In a one-sample setting with either equal or unequal cluster sizes, the following sections present the formulas and 
illustrate how to perform the sample size calculations for a binary outcome in R, without first calculating the sample 
size under simple random sampling. Scenario 2 is used to illustrate the sample size determination and demonstrate 
the use of the R function ‘epi.ssclus1estb’.  
To estimate the prevalence of influenza in the EU/EEA, a cross-sectional study is planned by ECDC where the 
computerised databases of general practitioners (GP) across the EU will be sampled and all the patients from these 
GP databases will be surveyed to determine whether they contracted the virus in the previous year. A pilot study of 
the prevalence of influenza in five offices showed that 46% of the patients contracted the disease. The intracluster 
correlation, 𝜌𝜌, was also estimated based on this pilot study and estimated to be equal to 0.2. If ECDC wants to be 
90% confident that the survey estimate of influenza prevalence is within 10% of the true population value, how 
many GP databases would need to be sampled?  
 
Two possible scenarios in terms of the cluster sizes (GP databases) will be considered: a) the GP databases have 
approximately the same size (75 patients), and b) the number of patients per GP database varies (with an average 
of 75 patients per database and a standard deviation of 35).  

Theoretical background  
For the sample size calculations, in case of one-stage cluster sampling, the formula below gives the number of 
clusters to be sampled (𝑛𝑛𝑐𝑐), to estimate a population proportion with desired precision [5]: 

       
 

The following parameters are used in the equation: 
• deff = the design effect. Let 𝜌𝜌 be the intracluster correlation coefficient. If the number of units per cluster is 

approximately the same and equal to b, the design effect is 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1 + (𝑏𝑏 − 1)𝜌𝜌. If the number of units per 
cluster varies, the design effect is  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1 + ((𝐶𝐶𝑉𝑉2 + 1)𝑏̄𝑏 − 1)𝜌𝜌  with 𝐶𝐶𝐶𝐶 = the coefficient of variation for 
the number of units per cluster; and 𝑏̄𝑏 = the average number of units per cluster; 

• 𝑧𝑧1−�𝛼𝛼
2
� = value from the standard normal curve corresponding to a significance level α. Use  𝑧𝑧1−�𝛼𝛼

2
�= 1.96 for 

95% confidence level; 
• 𝑃𝑃𝑦𝑦  = the estimated population prevalence; 
• 𝜀𝜀𝑟𝑟 = the relative error; 
• 𝑏̄𝑏 = the average number of units per cluster. 

The formula above generates the number of clusters to be sampled,  𝑛𝑛𝑐𝑐 , to estimate the proportion with a 
desired precision.   

Implementation of the scenario in R 
The formula above is implemented in the function ‘epi.ssclus1estb’ of the package ‘epiR’ in R software. 
The function requires the specification of the following arguments:  
• b is the average number of units in each cluster and its standard deviation (if the cluster sizes are not 

approximately equal).  
• Py is an estimate of the unknown population proportion. 
• The precision is specified by the arguments error and epsilon. In the scenario, the precision is expressed as 

a relative error of 10%. This is indicated by specifying ‘relative’ for the error in combination with a value of 0.1 
in the argument epsilon. 

• rho is the intracluster correlation. 
• nfractional indicates if the function should return an integer. 
• Since the investigator of the study is interested in a 90% confidence level, the argument conf.level will take 

the value 0.90.  
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4.2.1 Clusters with approximately the same size 
When the size of all clusters is approximately 75, the design effect equals 1 +(75-1)*0.2= 15.8. This means that 
the sample size for the one-stage cluster design needs to be 15.8 times larger than in a simple random sample, 
keeping all the other conditions the same. The formula returns the number of GP databases needed to be 90% 
confident that the prevalence rate of influenza in the study will be within 10% from the true population proportion 
(expected to be 46%).  

R code for sample size calculation 
# Setting:  
# sampling units per cluster = 75 
# Estimated prevalence rate = 0.46 
# Relative error = 0.1 
# Intracluster correlation coefficient = 0.2 
# Confidence level = 0.90 
     
  epi.ssclus1estb(b = 75,   # (approximate) number of patients per GP database 
                  Py= 0.46,   # estimated prevalence rate 
                  epsilon= 0.1,   # tolerable error 
                  error = "relative",  # the error we refer to is a relative error 
                  rho = 0.2,   # intracluster correlation 
                  nfractional = FALSE,  # it returns the rounded (upwards) sample size  
                    conf.level= 0.90)     # confidence level 
 
 

R output  
In the output below:  

• n.psu is 𝑛𝑛𝑐𝑐 , the number of clusters to be sampled; 
• n.ssu is the total number of units in the study (𝑛𝑛𝑐𝑐*𝑏𝑏). 

$n.psu 
[1] 66.90927 
$n.ssu 
[1] 5018.195 
$DEF 
[1] 15.8 
$rho 
[1] 0.2 
 

Conclusion 
To be 90% confident that the prevalence rate of influenza in the study will be within 10% from the true population 
proportion (expected to be 46%), a total of 67 GP databases (with a total of approximately 67*75=5 025 patients) 
need to be sampled. 

4.2.2 Clusters with unequal size 
Assuming that the number of patients per GP database is on an average 75, but with a standard deviation of 35, 
the number of GP databases (clusters) to be sampled is obtained with the following code. 

R code for sample size calculation 
 epi.ssclus1estb(b = c(75,35),  # average number of patients per GP database and standard deviation 
                  Py = 0.46,  # estimated prevalence rate 
                  epsilon = 0.1,  # tolerable error 
                  error = "relative", # the error we refer to is a relative error 
                  rho = 0.2,  # intracluster correlation 
                  conf.level = 0.90) # confidence level 
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R output 
In the output below:  

• n.psu is 𝑛𝑛𝑐𝑐 , the number of clusters to be sampled; 
• n.ssu is the total number of patients in the study (𝑏̄𝑏 𝑛𝑛𝑐𝑐). 

$n.psu 
[1] 80.74283 
$n.ssu 
[1] 6055.712 
$DEF 
[1] 19.06667 
$rho 
[1] 0.2 

Conclusion 
If the number of patients per GP database is variable (average of 75, with a standard deviation of 35), then the 
number of GP databases to be sampled should be 81. It is expected that a total of 6 056 patients will be included 
in the survey. So due to unequal cluster sizes, the number of GP databases to survey will increase from 67 to 81; 
the number of patients will increase from 5 025 to 6 056. 
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5 Bias and missingness  
Even if the sample size is computed accurately, there are other factors such as bias and missingness that affect the 
validity of the conclusions of the study. These key concepts will be discussed in this section.  

5.1 Source/types of bias 
Bias, also called ‘systematic error’, refers to the systematic distortion that affects the internal validity of the study 
results [15]. It can also be defined as a deviation from the population value. In this section, three types of bias are 
considered: a) selection bias, b) response bias, and c) estimation bias.  

Selection bias occurs as a result of any error in sample selection. It could happen when some parts of the 
population do not have the chance of being selected as a sample. For example, when using non-probability 
sampling methods such as convenience sampling. Using this method, the units included in the sample are those 
who are easy to select or reach and hence do not represent the entire population. Also, when using probability 
sampling methods, if some of the units are not included in the sampling frame, it would possibly introduce bias.  

A second type of bias is response bias, which occurs when not all the chosen units/respondents respond to the 
survey: non-respondents may have systematic differences from respondents, and this should be taken into account 
in the analysis. To account for these characteristics, models that deal with missing data can be used. Failing to 
include them could affect the validity of the results.  

Another type of bias is estimation bias which can be defined as the difference between the true population value 
of the parameter being estimated and the value of the estimator observed in the sample. If, on average, the value 
of the estimator is equal to the population value, then it is called an unbiased estimator. Unbiasedness is one of 
the criteria of a good estimator.  

5.2 Missing data and weighting 
Representativeness is one of the most important aspects of sampling when conclusions based on the samples 
collected need to be generalisable to the entire population. Missing data can reduce the representativeness of the 
sample and potentially introduce bias into the results. Some forms of missing data could be caused by non-
response (refusal to participate) of the unit (such as individual or laboratory). It could also be caused by not 
receiving a reply to some items in a questionnaire (for instance a subject refuses to complete information on 
questions related to income).  

It is recommended to design a survey that maximises the survey response rate. Incentives and appropriate modes 
of contact (personal contact, or face-to-face interviews) are two of the well-known strategies to increase response 
rates [16]. Increasing the sample size will not necessarily lead to the elimination of bias because the sample will 
continue being non-representative of the target population. If missingness/non-response cannot be avoided 
entirely, post-survey adjustment methods may be used, such as weighting, missing data imputation, and other 
models for missing data at the analysis stage.  

An important concept related to sampling that has not been discussed in the document is weighting. This is 
particularly useful when using a multi-stage sampling design (not covered in this document) as weights can be 
used to adjust estimates with the aim of decreasing the bias. Furthermore, the design effect of a multi-stage 
sampling design can also be obtained as a function of weights. 
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Annex  
#####(A) 
#function to correct for finite sample size 
correct.N <- function(n, N){ 
  # n = sample size obtained from the function (e.g. pwr.p.test) 
  # N = total population size 
  # Returns the corrected sample size 
  (n*N)/(n+N) } 
 
#####(B) 
# function to compute sample size for testing 
# difference in two dependent proportions 
sampleSizeMcNemar<-function (p1, p2, alpha = 0.05, power = 0.8, plot=T) 
{ 
  ## INPUT: 
  # p1: proportion of positive for test 1 
  # p2: proportion of positive for test 2 
  # alpha: significance level for two-sided test 
  # power: power of the test 
   
  ## CALCULATIONS: 
  # proportion of positive for test 1 and 2 
  p11 <- sort(seq(min(p2, p1), max(0,p2 + p1 - 1), by = -10^-4)) 
  # proportion of shifts from positive to negative, if a shift in test result 
  s <- (p1 - p11)/(p1 + p2 - 2 * p11) 
  # sample sizes 
  nl <- ceiling(0.25 * (qnorm(alpha/2) + qnorm(1 - power))^2/(0.5 -s)^2/(abs(p1 + p2 
- 2 * p11))) 
  # min/midpoint/max 
  N <- nl[c(1, median(1:length(nl)), length(nl))] 
   
  if (plot==TRUE){ 
    plot(s,nl,type="l",xlab="proportion of shifts from positive to negative, if a 
shift in test result", 
         ylab="sample size") 
    points(s[c(1, median(1:length(nl)), length(nl))],N,col="blue",pch=16) 
    text(s[1],nl[1],paste0("n=", nl[1]),col="blue",pos=2,cex=0.6) 
    text(s[median(1:length(nl))],nl[median(1:length(nl))],paste0("n=", 
nl[median(1:length(nl))]),col="blue",pos=2,cex=0.6) 
    text(s[length(nl)],nl[length(nl)],paste0("n=", 
nl[length(nl)]),col="blue",pos=3,cex=0.6) 
  } 
  names(N) <- c("N_min", "N_mid", "N_max") 
  return(N) 
} 
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