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Executive summary 

Vector-borne diseases are a specific group of infectious diseases that are a (re-)emerging threat to Europe.  

One important aspect of preparedness for vector-borne diseases is the surveillance of the introduction, 
establishment and spread of the main disease vectors. ECDC regularly publishes updated vector distribution maps 
at the NUTS3 level.  

This document describes a methodology to estimate the vector distribution status for those NUTS3 units for which 
observations are not yet available. These estimates are produced with spatial modelling techniques, using the 
currently available distributions to calibrate the modelling process. This document provides an overview of gap 
analysis procedures, sets out the full methodology, and also provides details of which methodological components 
were used with each output provided.  

The model outputs presented in this document are available on the ECDC website at: 

https://www.ecdc.europa.eu/en/all-topics-z/disease-vectors/prevention-and-control/vector-distribution-modelling. 

  

https://www.ecdc.europa.eu/en/all-topics-z/disease-vectors/prevention-and-control/vector-distribution-modelling
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1. Background 

ECDC has a mandate to strengthen the European Union’s capacity to prevent and control infectious diseases. 
Vector-borne diseases are a specific group of infectious diseases that are a (re-)emerging threat to Europe, 
requiring particular attention. The continuous increase of international travel and trade is one important risk factor 
for the introduction of new pathogens and vectors onto the continent, as is the extensive travel between mainland 
Europe and European overseas territories. Furthermore, changes in global climate may enhance the probability of 
previously absent vectors appearing in Europe and increase the further spread of vectors previously only present in 
limited numbers. All these factors could contribute to an increased risk for vector-borne disease transmission, 
representing a threat for outbreaks and the health of European citizens. 

One important aspect of preparedness for vector-borne diseases is the monitoring or surveillance of the 
introduction, establishment and spread of the main disease vectors. The level of organisation and responsibility of 
vector surveillance activities differs between the EU Member States, and there are several stakeholders at 
European and international levels. In order to ensure a coordinated approach and strengthen preparedness for 
vector-borne diseases, ECDC launched a call for the establishment of a collaborative network of entomologists and 
other public health professionals. VBORNET, the ensuing network, started its activities in September 2009. The 
activities of the VBORNET network continue under the extended network VectorNet. More information on VectorNet 
is available from: http://ecdc.europa.eu/en/healthtopics/vectors/VectorNet/Pages/VectorNet.aspx.  

Through VectorNet, ECDC maintains a database on the presence and distribution of vectors in Europe. The Centre 
regularly publishes updated distribution maps at the NUTS3 unit level. Substantial progress has been made in 
acquiring and validating available vector distributions, yet vector species maps at the NUTS3 level remain 
incomplete. Therefore, a methodology has been developed – subsequently referred to as 'gap analysis' – to provide 
estimates of the distribution status for those administrative units for which no information is currently available. 
These estimates are produced with spatial modelling techniques, using the currently available distributions to 
calibrate (or train) the modelling process. The 1-km-resolution outputs are then translated to values for each 
NUTS3 administrative unit.  

This document provides an overview of the gap analysis procedures. The development of the methods used (and 
the input data) has been, and continues to be, an iterative process. This document sets out the full methodology, 
as developed to date, but also provides details of which methodological components were used with each output 
provided. 

  

http://ecdc.europa.eu/en/healthtopics/vectors/VectorNet/Pages/VectorNet.aspx
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2. Methods 

Overview 
The basic modelling process involves establishing a statistical relationship between vector distribution data (the 
known presence, or absence status of a geographic area based on observations or expert opinion) and the values 
of a series of selected predictor covariates. These relationships are calculated for a set of sample locations, and the 
estimated equations are then applied to maps of the covariates which provide values at a pixel resolution. This 
results in a modelled spatial distribution with the probability of presence at the resolution of the covariate maps 
(standardised at 1 kilometre).  

A number of challenges related to the available data in the VBORNET/VectorNet database needs to be addressed: 

 The vector distribution status data were provided as presence, absence, or no data records for each NUTS3 
unit within the project areas shown in Figure 1. Though these exclusively polygon-level records have more 
recently been complemented by the addition of point location records, the techniques have been developed 
to accommodate both polygon and point data.  

 The modelling methods require both presence and absence points to calibrate the models. When there are 
only few or no absence points, they have to be inferred from other data, either by using known distribution 
limits from other sources or from a map of known habitat suitability from which unsuitable areas can be 
extracted as known absences.  

 These raw ‘medium-resolution’ probability maps do not, however, provide a clear picture of vector presence 
or absence for each administrative unit and are thus difficult to compare with the original input data. 
Procedures were, therefore, developed to summarise the modelled outputs for each administrative polygon 
in order to provide an output format in which input and modelled data can be readily compared. 

Figure 1. VBORNET (left) and VectorNet (right) project areas 

 

An important aspect of these procedures has been the close involvement of international experts who provided the 
vector distribution data during all stages of the modelling project and who were critical in defining habitat 
suitability and validating output models. 

The analyses cover a series of discrete stages that are expanded upon below:  

 Selection and prioritisation of species to be modelled 
 Extraction and evaluation of the known species distributions 
 Provision of habitat suitability maps to provide absence data, if required 
 Selection of covariates 
 Extracting covariates data from sample points 
 Spatial modelling 
 Evaluation and selection of model outputs 
 Conversion of selected modelled probability of presence to polygon level maps 
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Species prioritisation 
While the primary prioritisation may be dependent on epidemiological relevance or strategic importance, it is only 
possible to model a species if sufficient information about its distribution is available to calibrate or train the 
modelling process. Ideally, these data should be evenly distributed over the entire area of interest, so that the 
known status locations are representative of the whole region to be modelled. Where this is not the case, it should 
be noted that the further away a location is from the nearest confirmed status location, the less likely it is to be 
reliably modelled. An initial selection process would therefore discard species with insufficient known data or with 
known data that are too clustered in parts of the project area.  

There are a number of additional technical factors that need to be considered. One such factor is the feasibility of 
defining habitat suitability or range limits if no known absence data are available. The definition of habitat 
suitability for the model relies on either information from other sources or quantitative knowledge of environmental 
limiting factors or suitable habitat types. Another factor is whether new data are likely to be provided in the short 
term, which would suggest the modelling be delayed until these data are available. 

The current report covers gap analysis modelling over a five-year period for the following species:  

 Five species were selected for a first tranche (Phase 1): Ixodes ricinus, Aedes vexans, Culex modestus, 
Phlebotomus perniciosus and Phlebotomus tobbi. These were used to develop and test various possible 
methodologies.  

 Once this process was complete, a further five species were selected for the second phase of analysis: 
Dermacentor reticulatus, Hyalomma marginatum, Anopheles plumbeus, Phlebotomus papatasi and 
Phlebotomus ariasi. The analyses were initially performed in late 2012 and early 2013. Extensive data 
collections allowed revisions of the tick models in early 2016. 

Known distributions 
The known European distribution data of the vector species used as input for the models are shown in Figures 2–4. 

The dates are shown in the figure titles. It is evident from these maps that the completeness of the known 
distribution data of each species varies widely, and in a number of different ways, each presenting different 
challenges to the modelling process: 

 The phlebotomine data are relatively extensive and have many absence records, but are very regional, 
therefore the gaps are largely at the edges of the known distributions. If these edges were large relative to 
the known areas, the degree to which known distributions could be extrapolated by the modelling 
procedures could have been compromised.  

 The mosquito records are the least complete, particularly in the central and eastern areas, though they do 
have both presence and absence records. Unlike the phlebotomine data sets, the areas with unknown 
distribution status often extend very far from areas with known presence or absence, and model predictions 
are likely to come with large uncertainties in these large areas. 

 The tick distributions generally have quite wide-ranging presence data, but rather little absence data, and in 
the case of Ixodes, none at all. This represents a potential problem for spatial modelling techniques of 
presence and absence as they generally rely on having both presence and absence records in approximately 
similar proportions within the training data sets. Efforts (as described later) were made to add absence 
points to ensure that the total numbers of each category are balanced to be approximately equal for a 
number of reasons, firstly not to limit the spatial modelling techniques available for use, secondly to prevent 
the over-prediction of the species distribution, and thirdly to include higher resolution data to identify areas 
of absence within coarse regions recorded as positive. It is notable also that the more recent records of 
some of the tick species include both point and polygon data. This will become standard in future. 
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Figure 2. Known sandfly distribution data in 2013 

 

Figure 3. Known mosquito distribution in 2013 
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Figure 4. Known tick distribution data in 2015 

 

One approach to the problem of incompleteness in these data sets is to wait until there are sufficient additional 
data gathered in order to model the data using standardised spatial distribution modelling techniques. This 
condition is, however, unlikely to be met in the near future, and there will always be patterns of missing data that 
require special treatment. Therefore, a number of strategies are required to deal with all three categories of known 
distribution data (presence point locations, presence area locations, and absence locations). In short, presence 
points are added to the model training data, they are also compared with the presence area (polygon) data, which 
are updated if required before being used to generate additional presence training data. Absence data are 
compared with habitat data, where available and as described in the next section. 

Defining absences 
The most persistent challenge has been to define absence data where these records are sparse or missing from the 
project archives, as exemplified by the data for the tick Ixodes ricinus (Figure 4). One widely used way to do this is 
to define ‘pseudo absences’ or ‘background points’ [1,2] so that there are both presence and absence data to train 
the modelling. These pseudo absences are generally defined by the distance from known presence points, anything 
further away from a known presence than a set distance is set to absent, while the background points are defined 

by the selection of points within a species range determined purely by their position in relation to known 
presences. Such approaches may be appropriate when the available data are reasonably complete within the 
known range of a target species, and it is reasonable to assume that the absences will be around the edge of a 
distribution. It is less certain that such a method is appropriate when the data are known to be rather incomplete 
throughout the potential range, and so where the known presences are rather sparsely located within what is likely 
to be a continuous distribution: the sparser the known presence data, the more likely it is that pseudo absences 
will be defined in areas where the target species is, in fact, present.  

One way around this is to use information about the factors which limit the distribution of the target species rather 
than purely geostatistical approaches; examples are habitat preferences and range limits imposed by climatic 
factors [3]. Areas defined as unsuitable can then be set as ‘inferred absent’, and standard presence/absence 
modelling techniques can then be used. An advantage over the standard pseudo-absence methods is that such 
inferred absences are not distance dependent and, as they do not assume reasonably complete sample coverage, 
can be located within the general range of recorded presence. The approach is especially applicable to polygon-

level presence records, as limiting conditions within these polygons can be used to introduce absence points within 
areas that would otherwise be assigned a status of (entirely) present. Thus, for example, a polygon may be 
assigned a status of present, while the unsuitable habitats within it can be set to absent.  

The habitat types each vector species prefers were defined accordingly. Experts were asked to define primary, 
secondary and unsuitable habitat types from two land cover maps: CORINE 2006, which covers the EU and Turkey, 
but not the eastern- or southernmost parts of the project coverage [4], and GLOBCOVER 2009, which is a global 
product [5]. From these, a combined suitability map for each vector species was produced, using both land use 
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definitions. This process was iterative: all versions of the habitat maps were evaluated at local and regional level by 

sending the complete range to the relevant experts and asking them to select the habitat map which they felt best 
represented an accurate map of the suitable habitats and potential distribution of the vector(s) in which the 
experts specialised.  

A number of issues became apparent during this process:  

 Experts found the CORINE land classes easier to assign to the suitability categories, and so this system was 
given default priority where its coverage was available, and the GLOBCOVER was used only where CORINE 
data were not available.  

 Though different experts did, by and large, agree (occasionally after some negotiation) on the definitions, it 
became clear that the same habitats may assume different priorities in different areas. This was most 
evident for I. ricinus, for which natural grassland and moorland was defined as primary habitat in the UK, 
but secondary in northern continental Europe. Fortunately, this did not affect the outcome of these 
analyses, as the relevant habitats were comparatively rare in continental Europe, though subsequent 
revisions of these procedures and analyses of different species may need to take such regional variations 

into account.  

These various habitat maps illustrated for I. ricinus in Figure 5 were used in a number of ways, most importantly to 
define unsuitable habitats to identify inferred absences – as discussed above – and also to help interpret the model 
outputs, using the assumption that primary habitats are more likely to be associated with a high predicted 
probability of presence. Thus, a model with extensive mismatches between predicted probability values and the 
expert-defined category could be assumed to be less reliable than one with no such disparities.  

Figure 5. Range of habitat-masked distributions defined for Ixodes ricinus 

  

In a number of cases, it was possible to also use environmental limiting factors to define further absence regions. 
In the case of I. ricinus, for example, additional information about environmental limits was available and could be 
readily mapped, and so the habitat threshold was combined with ecological thresholds reflecting the fact that the 
tick is only present in areas with fewer than 175 days of snow cover per year and where the vegetation period was 
greater than 180 days. Altitude and temperature thresholds were also used for some of the other vector species. 
The details are given in Annex 1 and the masks combining habitat and limiting factors are shown in Annex 2. The 
habitat suitability maps themselves are provided online and available from: https://www.ecdc.europa.eu/en/all-
topics-z/disease-vectors/prevention-and-control/vector-distribution-modelling. Examples generated for I. ricinus 
and P. perniciosus are provided in Figure 6. 

https://www.ecdc.europa.eu/en/all-topics-z/disease-vectors/prevention-and-control/vector-distribution-modelling
https://www.ecdc.europa.eu/en/all-topics-z/disease-vectors/prevention-and-control/vector-distribution-modelling
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Figure 6. Habitat suitability based on habitat types and environmental limiting factors for Ixodes 
ricinus and Phlebotomus perniciosus 

 

Another source of absence information included other mapped data sets – which in the case of ticks, is exemplified 
by the global distributions provided by the data held in the webpages on fauna of ixodid ticks of the world [6] 
(www.kolonin.org which was available until 2014, but has since been closed). Data such as these can be used to 
define areas in which presences are to be expected. It can also be assumed that the species are unlikely to be 
found far from the edges of a defined presence polygon: in these analyses, appropriate data were available for D. 
reticulatus and H. marginatum (but not I. ricinus as its presence extended beyond the project areas) and absence 
was defined at 300 km or more from the presence polygon boundary. The resulting absence data were, therefore, 
taken from locations deemed to be unsuitable for the species within the project ‘present’, ‘unknown’ or ‘no data’ 
areas, as well as 300 km beyond the presence polygons.  

The presence data sample locations were taken only from the suitable habitat within the project administrative 
units defined as ‘present’ (see Figure 7), and, where available, from point location data. This process ensured that 
presence points were taken only from ecologically or climatically suitable locations within a polygon designated as 
‘present’ and not from unsuitable areas. 

Figure 7. Presence and absence data of Hyalomma marginatum based on VBORNET status 2013  

 

Covariates 

The covariates tested in the modelling procedures were drawn from a standardised set of ecological parameters, in 
particular a suite of Fourier-processed MODIS satellite images which provides a range of biologically interpretable 
variables related to levels and seasonality of temperature and vegetation related factors. These covariates have 
been widely used in species distribution modelling [7, 8] since their initial production in 2005. These analyses used 
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covariate time series between 2001 and 2012. The covariates are summarised in Table 1, and all are available to 

registered members of the Spatial Data Website (www.spatialdatasite.com). 

Table 1. Covariates offered to modelling procedures. 

Covariate Covariate 

1. EDYY03A0: Middle infra-red mean 
2. EDYY03A1: Middle infra-red amplitude 1 
3. EDYY03A2: Middle infra-red amplitude 2 
4. EDYY03A3: Middle infra-red amplitude 3 
5. EDYY03MN: Middle infra-red minimum 
6. EDYY03MX: Middle infra-red maximum 
7. EDYY03P1: Middle infra-red phase 1 
8. EDYY03P2: Middle infra-red phase 2 
9. EDYY03P3: Middle infra-red phase 3 

10. EDYY03VR: Middle infra-red variance 
11. EDYY07A0: Daytime LST mean 
12. EDYY07A1: Daytime LST amplitude 1 
13. EDYY07A2: Daytime LST amplitude 2 
14. EDYY07A3: Daytime LST amplitude 3 
15. EDYY07MN: Daytime LST minimum 
16. EDYY07MX: Daytime LST maximum 
17. EDYY07P1: Daytime LST phase 1 
18. EDYY07P2: Daytime LST phase 2 
19. EDYY07P3: Daytime LST phase 3 
20. EDYY07VR: Daytime LST variance 
21. EDYY08A0: Nighttime LST mean 
22. EDYY08A1: Nighttime LST amplitude 1 
23. EDYY08A2: Nighttime LST amplitude 2 

24. EDYY08A3: Nighttime LST amplitude 3 
25. EDYY08MN: Nighttime LST minimum 
26. EDYY08MX: Nighttime LST maximum 
27. EDYY08P1: Nighttime LST phase 1 
28. EDYY08P2: Nighttime LST phase 2 
29. EDYY08P3: Nighttime LST phase 3 
30. EDYY08VR: Nighttime LST variance 
31. EDYY14A0: NDVI mean 
32. EDYY14A1: NDVI amplitude 1 
33. EDYY14A2: NDVI amplitude 2 
34. EDYY14A3: NDVI amplitude 3 
35. EDYY14MN: NDVI minimum 
36. EDYY14MX: NDVI maximum 
37. EDYY14P1: NDVI phase 1 
38. EDYY14P2: NDVI phase 2 

39. EDYY14P3: NDVI phase 3 
40. EDYY14VR: NDVI variance  
41. EDYY15A0: EVI mean 
42. EDYY15A1: EVI amplitude 1 
43. EDYY15A2: EVI amplitude 2 
44. EDYY15A3: EVI amplitude 3 
45. EDYY15MN: EVI minimum 
46. EDYY15MX: EVI maximum 
47. EDYY15P1: EVI phase 1 

48. EDYY15P2: EVI phase 2 
49. EDYY15P3: EVI phase 3 
50. EDYY15VR: EVI variance  
51. EDBC2K12: BIOCLIM Annual Precipitation 
52. EDBC2K13: BIOCLIM Precipitation of Wettest Month 
53. EDBC2K14: BIOCLIM Precipitation of Driest Month 
54. EDBC2K15: BIOCLIM Precipitation Seasonality (Coefficient of 

Variation) 
55. EDBC2K16: BIOCLIM Precipitation of Wettest Quarter 
56. EDBC2K17: BIOCLIM Precipitation of Driest Quarter 
57. EDBC2K18: BIOCLIM Precipitation of Warmest Quarter 
58. EDBC2K19: BIOCLIM Precipitation of Coldest Quarter 
59. EDV590AS: DEM (Aspect) 
60. EDV590EL: DEM (Elevation) 

61. EDV590RG: DEM (Ruggedness) 
62. EDWC57A0: WORLDCLIM precipitation mean 
63. EDWC57A1: WORLDCLIM precipitation amplitude 1 
64. EDWC57A2: WORLDCLIM precipitation amplitude 2 
65. EDWC57A3: WORLDCLIM precipitation amplitude 3 
66. EDWC57MN: WORLDCLIM precipitation minimum 
67. EDWC57MX: WORLDCLIM precipitation maximum 
68. EDWC57P1: WORLDCLIM precipitation phase 1 
69. EDWC57P2: WORLDCLIM precipitation phase 2 
70. EDWC57P3: WORLDCLIM precipitation phase 3 
71. EDWC57VR: WORLDCLIM precipitation variance 
72. EDXXGRPD: GRUMP Population density 
73. EDXXGRPW: GRUMP Population weighted 
74. EDXXJRCA: Travel time (Joint Research Centre) 
75. EDXXLPG1: Length of Growing Period LGP 

LST = land surface temperature. NDVI = normalised difference vegetation index; EVI = enhanced vegetation index. DEM = 
digital elevation model. All files starting with EDYY are Fourier-processed MODIS satellite images produced by the TALA Research 
Group Department of Zoology, University of Oxford. All analyses prior to 2013 used a time series running from 2001–2008. 
Thereafter, this suite was replaced with outputs derived from a 2001–2012 time series. Files with Bioclim and Worlclim in the 
filename are derived from WORLCLIM data sets (www.wordclim.org). GRUMP is derived from population layers produced by 
http://sedac.ciesin.columbia.edu/. JRC Accessibility downloaded from http://bioval.jrc.ec.europa.eu/products/gam/index.htm; 
Length of growing period is derived from data provided by FAO, Rome. All layers extracted and standardised by ERGO for 
EDENext and VMERGE (www.edenextdata.com). 

Modelling 
Spatial models quantify the statistical association between response variables (e.g. vector presence or absence) 

and predictor covariates for a number of sample locations [9]. Once calibrated, these models are used to make 
predictions for the response variable in locations where only data on one or more predictor variables are available. 
Different spatial modelling methods are optimised to address specific limitations and bias of input data, for example 
dispersion, patchiness, relative numbers of vector presence and absence. In this analysis, a comparison of 
established methods was made by both statistical methods and expert opinion. 

file:///C:/Users/ukreisel/Desktop/Current%202019/%23Olivier%20-%20vector%20distribution%20surveillance/(www.spatialdatasite.com
file:///C:/Users/ukreisel/Desktop/Current%202019/%23Olivier%20-%20vector%20distribution%20surveillance/www.wordclim.org
http://sedac.ciesin.columbia.edu/
http://bioval.jrc.ec.europa.eu/products/gam/index.htm
file:///C:/Users/ukreisel/Desktop/Current%202019/%23Olivier%20-%20vector%20distribution%20surveillance/www.edenextdata.com
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Extraction of sample points 

Once the maps of known presence and absence status have been prepared, it is necessary to define a series of 
sample points for which to extract covariate values for each category. As there are typically response values for 
both polygons and point locations, two separate protocols are required:  

 For polygon locations, the number of points is set according to the areas of the training data coverage to 
provide a sample point every 50–100 km.  

 By default, all locations with point data are used.  

These combined samples are then screened to establish the ratio between the number of recorded presence and 
absence points. Additional absence points are subsequently defined within the entire study area to ensure that the 
total numbers of each category are balanced to be approximately equal. During consultations with vector experts it 
was confirmed that balancing the presence/absence ratio in this manner results in improved output maps.  

Examples are provided in Figure 8 for the Cx. modestus and D. reticulatus 2015 iterations, which illustrate one of 

the hurdles to be overcome in generating the sample location data set. The presence data are restricted to a 
relatively small area in central and southern Europe, but outposts in northern Europe indicate that it is not 
advisable to produce a regional model. Also, the extent of the absence area is rather larger than that of the known 
presence. Further, the geography of habitat suitability is such that absence regions within the presence polygons 
are quite small. One way to deal with this is to define absence and presence point locations separately using the 
‘create spatially balanced point’ geoprocessing tool in Esri’s ArcMap. This extracts a user-defined number of sample 
points from raster probability images, with the number of locations defined by the probability value. The most 
straightforward implementation is to create separate binary images for presence and absence status and set an 
equal number of points to be sampled from each image, which can then be concatenated into a single sample 
location data set. 

Figure 8. Presence (red) and absence (blue) sample points, Culex modestus (left), Dermacentor 
reticulatus (right), 2015 iterations 

  

Modelling extent 

For several species – notably P. tobbi, P. papatasi, D. reticulatus, and H. marginatum – the known distribution 
status (particularly presences) was restricted to fairly contiguous regions of Europe, and the known absence status 
was also rather spatially coherent. For these species, it was not necessary to build continental models, and the 
model extents were confined to the area of known presence, plus all administrative units with unknown distribution 
status and an extensive buffer area (> 200 km) into the known absence areas.  

Modelling methods 

The range of modelling techniques used to provide the candidate outputs for expert assessment included non-
linear discriminant analysis (NLDA), random forest (RF), general linear model (GLM) regression-based methods 
(including logistic regression) and boosted regression trees (BRT). All these were implemented using the VECMAP 
[13] modelling system. 

Earlier analyses focussed on NLDA and RF [10, 11]. More recently, BRT has replaced NLDA because models based 
on BRT provide a stronger contrast than those produced with the RF technique. BRT also accommodates non-linear 
relationships more effectively than NLDA, so it is less limiting in the potential range of extrapolation. Models 
produced with NLDA may also be more affected by zonation than BRT, which, by its nature, accounts for clustering 
in geographic and covariate space within its operation. Recent RF models also include a zoned element in the 
analysis, whereby separate models were calculated for distinct spatial stratification zones related to ecosystem 
type. This is intended to let RF produce models that are more closely tailored to local conditions.  
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In order to reduce the impact of certain methodological idiosyncrasies, it was decided to produce a range of 

models by using at least two distinct methods (Table 2). These could then be assessed and compared to identify 
and select the best one. Model outputs were evaluated using standard, and extensive, accuracy metrics (e.g. ROC, 
AUC, Kappa, Confusion matrices) as provided by the VECMAP software [13]. All models were run on a random 75% 
of the sample data set to ensure variability of replicates, and automatic covariate variable reduction was applied. 
Model validation was implemented for the training data locations. All models presented to the experts for validation 
or incorporated into the ensembles had AUC values of 0.85 or better, which indicates a highly significant model fit. 
Ground truthing via field sampling has yet to be formally completed on any of the models beyond the expert 
validation based on local knowledge, as mentioned elsewhere in this document. 

In addition to the statistical analysis of predictive accuracy, experts and vector data providers were asked to help 
select or reject candidate models from the range provided, based on comparisons with known detailed local and 
regional distributions. In this process, assessments of unexpected results, such as false negatives and false 
positives, were especially useful. At times this led to changes in data used for identifying environmental limits, for 
example to improve predictions. 

An alternative could have been to select the model outputs solely based on accuracy levels, but, as the metrics of 
all selected models indicated high reliability, these were not seen to provide sufficient discriminatory power, and 
expert evaluation was considered to be needed to select the definitive outputs.  

As a results of this approach, usually more than one model output was found to be statistically reliable and judged 
to be accurate by the experts. In this event, there was no obvious way to select one model over another and so, 
following recent trends, the ‘validated’ models were averaged (ensembled) to provide a ‘consensus’ product, which 
would be less prone to anomalies in predicted distributions, biases in the input data, or vagaries in the statistical 
methodologies. Relevant experts also evaluated these ensembles. 

Masking 

All model outputs are masked by the suitability masks (see Annex 1) used to define ‘inferred absences’. These 
masks do not, however, incorporate the bounding distributions used to help define absences beyond the extents of 

known presence status, as this allows the modelling process to identify potential areas with presence in suitable 
habitats beyond currently defined ranges. These locations may well be the most likely areas for the vectors to 
spread to in the future. 

Conversion of pixel-level probabilities to NUTS3 outputs  
After producing and selecting a preferred candidate from the range of model outputs assessed by the experts, one 
final step remained: converting the 1-kilometre-resolution model of probability of vector presence to the standard 
project format of NUTS3 areas.  

Spatial models rarely produce zero-probability predictions and thus will generally not predict absolute ‘absences’ 
even at the pixel level, and certainly not when summarised probabilities for entire NUTS3 units are calculated. 
Further, a mean NUTS3 probability of, for example, 0.3 may be derived from either a narrow range of values 
around 0.3 or a combination of high and low values. With a probability of 0.5 as the threshold value for defining 

modelled presence, the former would be interpreted as entirely absent, but the latter as a combination of present 
and absent.  

Therefore, a more discerning method was developed to describe the level of vector presence within each unit: All 
model pixel outputs, after unsuitability masking, were converted to binary presence or absence, in accordance with 
the modelled probability, using a 50% threshold value to indicate presence. The percentage of each NUTS3 
polygon area – with the vector predicted to be present – was calculated and mapped. The resulting values were 
then categorised as ‘negligible predicted risk’ (<1%), ‘low predicted risk’ (1—25%), ‘medium predicted risk’ (25—
75%), and ‘high predicted risk’ (>75%). These estimates were combined with the original project input 
distributions to run the final gap analysis and generate NUTS3-level outputs. 
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3. Results 

The full set of outputs is detailed in Table 2, which provides the model technique, modelled extent, analysis date, 
and revision date, if applicable. The mapped outputs are available online from: https://www.ecdc.europa.eu/en/all-
topics-z/disease-vectors/prevention-and-control/vector-distribution-modelling.  

Table 2. Model details  

Species Model type Latest date Extent  AUC 

Ticks 

Ixodes ricinus Zoned RF  Spring 2016 Europe 0.9396 

BRT 0.9871 

Ensemble 0.9918 

Dermacentor reticulatus Zoned RF Autumn 2013 Europe 0.923 

NLDA 0.958 

Ensemble 0.964 

Hyalomma marginatum Zoned RF Spring 2016 Europe 0.91 

BRT 0.904 

Ensemble 0.9143 

Mosquitoes 

Anopheles plumbeus Zoned RF Autumn 2013 Europe 0.981 

NLDA 0.926 

Ensemble 0.994 

Culex modestus RF Spring 2016 Europe 0.955 

BRT 0.943 

Aedes vexans RF Autumn 2012 Europe >0.85 

NLDA >0.85 

Sandflies 

Phlebotomus ariasi Zoned RF Autumn 2013 South-west EU 0.92 

NLDA 0.99 

Ensemble 0.989 

Phlebotomus papatasi Zoned RF Autumn 2013 Southern EU 0.94 

NLDA 0.975 

Ensemble 0.99 

Phelbotomus tobbi NLDA Autumn 2012 South-west EU >0.85 

Phlebotomus perniciosus RF  Autumn 2012 Southern EU >0.85 

NLDA >0.85 

RF = random forest, BRT = boosted regression trees, NLDA = non-linear discriminant analysis, bold = selected model, italics = 
ensembled components. Sample point number min. 200, max. 20 000 
This section uses three case studies to illustrate the results obtained from different types of input distribution. These are:  
 A standard model typified by Anopheles plumbeus;  
 A model with no absent data initially provided illustrated by the case of Ixodes ricinus; and  
 A regional model as illustrated by Phlebotomus tobbi  

A standard model – Anopheles plumbeus 
The input data presented in Figure 9 show the 2012 version of recorded presence/absence at the NUTS3 unit level 
(left) with the unsuitability mask (right). The recorded distributions are quite sparse – the majority of the polygons 
have no data associated with them – but what data there are (both presence and absence) are quite well 
distributed to cover the whole of continental Europe. There is also an approximate balance between presence and 
absence records.  

The suitability map shows a large area of unsuitable habitat. The suitable areas that were defined consist largely of 
the habitat categories containing at least some deciduous forest, while the unsuitable habitats without deciduous 
forest are quite extensive. When combined with the polygons with known absence, this provides a good coverage 
for known or inferred absence across the whole project area.  

https://www.ecdc.europa.eu/en/all-topics-z/disease-vectors/prevention-and-control/vector-distribution-modelling
https://www.ecdc.europa.eu/en/all-topics-z/disease-vectors/prevention-and-control/vector-distribution-modelling
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Figure 9. Distribution status as of 2012 (left) and habitat suitability (right), Anopheles plumbeus  

  

Both NLDA and RF models were implemented for this species (Figure 10). At first sight, these appear quite 
different as there is much more green in the RF model. This green class, however, represents the lowest predicted 
probability class (lower than 1% probability) and thus is more or less certain to represent absence like the white 
class in the NLDA map. More importantly, the yellow and orange classes inferring presence are very similar in both 
models.  

Figure 10. NLDA (left) and RF (right) model outputs for Anopheles plumbeus (as of 2012)  

  

The experts were unable to select the best output between the two, and the final model generated was an 
ensemble of the two (Figure 11). The NUTS3 output derived from this model is shown on the right of the same 
figure, overlain with the original input polygon records to produce a combined NUTS3-level map of known and 
predicted risk. The match between the two measures is fairly straightforward: the predicted risk – as indicated by 
the proportion of each NUTS3 unit that is predicted to support the vector – is highest in central European areas 
near the recorded presences. It is, by contrast, lower in the UK even though there are recorded presences there, 
which most probably reflects the much higher proportion of unsuitable land. The risk in Portugal is predicted to be 
medium, despite the extent of the neighbouring recorded absences, which is likely to reflect the difference in 

environmental conditions between Portugal and Spain.  

Figure 11. Ensembled model (left) and derived NUTS3 unit risk overlaid with known distribution 
status (right) for Anopheles plumbeus (2012) 
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A model with no recorded absences – Ixodes ricinus 
The data for I. ricinus represent an example for which there are plenty of occurrence records signifying presence, 
but there are few, if any, records of absence. I. ricinus is a very widely recorded tick vector of several significant 
diseases such as tick-borne encephalitis and Lyme borreliosis, and so is an important species from a public health 
perspective. As a result, it was high on the priority list for modelling and regular updating, despite the unbalanced 
recorded data sets. 

The data for this species included presence records as polygons and as recorded geographic locations. Absence 
data were very limited in number and only defined by project fieldwork designed to establish the northern edge of 
the species range (where the vector has been recorded as introduced but not established (Figure 12). This is not 
sufficient to allow any of the modelling to produce a reliable prediction, and the majority of absence records 
offered to the model were therefore taken from the unsuitable areas defined by the habitat mask (derived from 
land cover data sets and snow cover data) (Figure 12). 

Figure 12. Status (left) and habitat (right) suitability, Ixodes ricinus (spring 2016) 

 

The habitat mask graphic also shows the boundary of the vector’s distribution according to Kolonin (buffered with 
300 km), which, in this case, was not used to add additional absence points to the model as experts indicated the 
mask was representative of unsuitability on its own. The coincidence between the Kolonin boundaries and the 
model outputs in Figure 13 does, however, suggest that they are both likely to be fairly accurate.  

Two model methods were used for this species, namely zoned RF and BRT, with 100 and 1000 prediction trees, 
respectively (Figure 13). As with the analyses of An. plumbeus presented above, the outputs are very similar for 
the high predicted probabilities, but differed substantially for the low probability classes. Experts who were asked 
to assess and validate the models expressed no clear preference for one over the other, and the two candidates 
were therefore ensembled and then masked to provide the final output model. 

Figure 13. BRT (left) and RF (right) unmasked models, Ixodes ricinus (spring 2016) 

 

The final output masked ensemble model and its derived NUTS3 unit risk maps are shown in Figure 14. A key 
feature of the model is that it shows extensive areas of low probability within the NUTS3 units that are recorded as 
positive. The two maps, therefore, provide a somewhat different impression of the vector spatial distributions, 
especially in areas such as Spain or northern Scandinavia, where the predicted areas of presence within the 
present polygons are very restricted. This shows that the admin unit level maps do indeed disguise considerable 
detail, especially at the edges of the vector’s distribution.  
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Figure 14. Ensembled and masked model (left) and derived NUTS3 unit risk overlaid with known 

distribution status (right), Ixodes ricinus (spring 2016) 

 

The predicted probability of presence values (Figure 14, right) compares well with the known distribution status 
data: the predicted values are ‘medium risk’, which means that between a quarter and three-quarters of the NUTS3 
unit area are predicted to support the vector. 

A regional model – Phlebotomus tobbi 
Some of the known distribution status data cover only parts of the project area with regard to recorded presences 
and known or anticipated absences confined to geographically coherent regions. This means that the model may 
be restricted to a limited area: it includes a suitable number of known absences and presences, but does not need 
to be extended to the whole project area.  

Figure 15. Polygon and habitat suitability of Phlebotomus tobbi (as of 2012) 

 

This is the case for the sandfly P. tobbi, which is only recorded as present in the south-east quadrant of the project 
area, and known or anticipated to be absent elsewhere. The models were restricted accordingly to cover a 
rectangle which contains all known presences, a similar surface area of absences, and a ‘no data’ area in-between 
(Figure 15). There are several important benefits to this regional approach: it is quicker to calculate because the 
area is smaller; it avoids the risk of extrapolating too far from the known presence data, which could lead to 
anomalous results such as the prediction of spurious presences in the areas most remote from the recorded 
occurrences where the covariate values may be very different to those in the core range.  

For P. tobbi, emphasis was placed on detailed examination of a single model rather than a number of models. In 
particular, the apparent contradictions between recorded and predicted distributions were investigated. Examples 
of these contradictions are found in central Turkey, northern Turkey, and southern Italy, for which the model 
suggested that the vector is present – though only in a few regions and at comparatively low probabilities – while 
the recorded data showed absence. In a number of cases (mostly in Turkey), the status assigned to these NUTS3 

units was within the VectorNet database, which was re-evaluated by experts and amended if justified.  
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Figure 16. Selected model and NUTS3 unit level risk overlaid with known distribution status of 

Phlebotomus tobbi (autumn 2012) 

 

Data availability  
Figures of all selected models and the contributory habitat masks are provided online. 
https://www.ecdc.europa.eu/en/all-topics-z/disease-vectors/prevention-and-control/vector-distribution-modelling.  

The models for sandflies and mosquitos are available as data papers [10, 11] and provide access to all digital data 
and summary graphics.  

Using the modelled outputs  
While the primary objective of producing gap-free and continental-scale vector maps was to ‘fill the gaps’ and show 

an index of disease risk for the whole project area, there are also a number of additional applications. Perhaps the 
most obvious is to target additional field work – both to validate the models and to gather more specific 
information about a vector. Examples, as illustrated in Figure 17 (left panel) for Ae. vexans, might include the 
following:  

 Defining locations for epidemiological surveys at sites which are predicted to have a high probability of 
presence but for which no field data are yet available (A in Figure 17);  

 Defining transects along predicted edges of distributions to confirm range limits, or identifying locations for 
abundance surveys, or monitoring spread or contraction (B in Figure 17);  

 Defining locations for seasonal additional surveys, and for confirming absence (C in Figure 17, left panel);  
 Identifying where additional field data are needed to produce a prediction. This is particularly relevant to 

species for which known records are restricted to a small part of the likely distribution so that the model 
algorithms cannot provide precise predictions for the whole project area because the covariate values in 
some parts are too different from those in the known areas to allow for reliable predictive relationships 

(D in Figure 17).  

There are also likely to be occasions when a model prediction contradicts the observed data, most often when 
models predict presence in areas that the known distribution status data or the masks used suggest the vector to 
be absent (as discussed for P. tobbi above) or along the edges of spreading distributions that have not been 
surveyed for some time.  

https://www.ecdc.europa.eu/en/all-topics-z/disease-vectors/prevention-and-control/vector-distribution-modelling
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Figure 17. Using the models for Aedes vexans (left) and for Ixodes ricinus (right) 

 

Another example: I. ricinus in Iceland illustrates detailed sample targeting. Field surveys in 2015 were required to 
establish the northern limits of the species distribution. A number of broad locations were identified, namely the 
Shetland, Orkney and Faroe Islands, northern Scandinavia and Iceland.  

The gap analysis shown for Iceland, the Faroes and the Orkney Islands in Figure 17 (extracted from Figure 13; 
right panel) predicted relatively few areas of presence in Iceland, and, by contrast, relatively few areas of absence 
in the Islands. Sampling was guided by the relative probabilities, rather than absolute, with sampling focused on 
the highest of probability areas in each of the three locations. This approach proved successful; in Iceland, for 
example, the results of field sampling guided by these models proved accurate in ~75% of the locations [14]. 
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4. Conclusions and potential implications 

The work described here was designed to develop a strategy for enhancing the NUTS3 polygon level distribution 
maps of selected species taken from the three main vector groups that VBORNET efforts address: sandflies, ticks 
and mosquitoes. There are a number of data sets for other species, which have not yet been subjected to these 
gap filling procedures. In addition to applying these methods to the remaining species, there are a number of 
methodological steps that could be further developed, most notably: 

 Additional refinements are needed to define the suitable habitats by investigating regional variations, 
incorporating a wider range of limiting threshold environmental or climatic values, and possibly assessing 
the merits of using one or more of the ecological classification data sets (e.g. Olson [12]). This process 
could be formalised within project recording systems, with a similar process of expert contribution and 
specialist validation. It could also take place as a regular contributory session at project meetings with 
network members. 

 The only validation – beyond the purely statistical screening through accuracy metrics – is external 
evaluation by vector experts. This could be enhanced further by considering the model outputs in relation to 
the defined habitats and the reported distributions to find out if there are any systematic errors that could 
be rectified. 

 In some cases, the modelling process was unable to produce statistically reliable predictions because the 
known presence (or absence) was too far removed, either in environmental or geographic terms. This 
phenomenon could be used to prioritise data collection efforts which would then provide more complete 
prediction surfaces for the model. 

 The final outputs are provided only as NUTS-related values. Depending on the uses to which these maps 
are put, it may be desirable to provide additional types of maps, for instance maps combining NUTS3-level 
project data with pixel resolution modelled outputs. This may facilitate the use of the maps for higher 
resolution targeting of field surveillance to validate the maps or use them in response to some 
epidemiological event.  

 Reliance on polygon-level data has, until recently, been a matter of pragmatic necessity: for the earlier 

models there were few, if any, point data available. This also implied that the sample values used to 
calibrate the models was based on chance. This is acceptable for absence records where the species is 
known to be absent from every point in a polygon. It is, however, less reliable for presence records as there 
will be unsuitable places (as illustrated by the habitat maps) where the species is absent. While this can be 
mitigated through the use of suitability masks, as applied here, it is clearly preferable to use geo-referenced 
data and, where possible, known locations.  

 The number of covariates tested in the modelling process is rather high. While this may improve the 
likelihood of building good models, there is an argument to be made for using a reduced number of 
predictors to mitigate overfitting, which is always a danger for multivariate modelling. An alternative could 
be to introduce another modelling step once the full models have been selected, and produce a final 
product of a model where the covariates are limited to, for example, the top ten predictors. This may also 
mean that using the results to identify which covariates are driving the distributions is more difficult, as 
collinearity between predictors may affect the priority of covariates in the model equations. Therefore 
covariates listed in the top ten may be more a matter of chance than biology. 

The earlier models were restricted to EU countries and relied on NUTS3 boundaries. Later analyses covered an 
extended area, for which NUTS3 units were not available. It was therefore necessary to use the UN Global 
Administrative Unit Layer (GAUL) boundaries. One of the drawbacks with the NUTS3-only data set was the fact that 
the unit size varied dramatically from country to country: Germany for example, has very small NUTS3 regions, 
while Scandinavia has very large ones. It is preferable to have equal-sized map units for the whole study area so 
that all the sampling, summarising and displaying procedures work with similar constraints. As a result, the current 
administrative unit data set is a combination of both levels, each chosen in an effort to standardise the NUTS3 unit 
area. The more standardised size of polygons used in the VectorNet project area displayed in Figure 1 is quite 
obvious if compared to the exclusive use of NUTS3 units in VBORNET. 
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Annex 1. Habitat suitability data 

Table 3. CORINE habitat preferences defined by experts for all species  
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Continuous urban fabric 3 3 3 3 3 3 1 3 3 3 

Discontinuous urban fabric 3 3 3 3 3 3 1 3 3 3 

Industrial or commercial units 3 3 3 3 3 3 1 3 3 3 

Road and rail networks and associated land 3 3 3 3 3 3 2 3 3 3 

Port areas 3 3 3 3 3 3 2 3 3 3 

Airports 3 3 3 3 3 3 2 3 3 3 

Mineral extraction sites 3 3 3 3 3 3 2 3 3 3 

Dump sites 3 3 3 3 3 3 2 3 3 3 

Construction sites 3 3 3 2 2 2 1 3 3 3 

Green urban areas 2 3 3 2 2 2 1 1 3 2 

Sport and leisure facilities 3 3 3 3 3 3 2 1 3 3 

Non-irrigated arable land 3 3 3 2 2 2 1 3 2 3 

Permanently irrigated land 3 2 3 2 2 2 1 3 3 3 

Rice fields 2 1 3 2 3 3 2 3 3 3 

Vineyards 3 3 3 2 2 2 2 3 1 3 

Fruit trees and berry plantations 3 3 3 2 1 1 2 3 2 2 

Olive groves 3 3 3 2 2 2 2 1 2 3 

Pastures 2 3 2 2 3 3 1 3 2 2 

Annual crops associated with permanent crops 3 3 3 2 2 2 1 3 2 3 

Complex cultivation patterns 3 3 3 2 2 2 1 3 2 3 

Agriculture with significant natural vegetation 2 2 2 2 2 2 1 1 2 2 

Agro-forestry areas 2 2 3 2 2 2 2 1 3 2 

Broad-leaved forest 2 3 1 2 1 1 3 1 3 1 

Coniferous forest 3 3 1 2 2 2 2 3 2 1 

Mixed forest 2 3 1 2 2 2 2 1 2 1 

Natural grasslands 2 3 1 2 3 3 2 3 1 2 

Moors and heathland 2 3 1 2 1 1 1 3 1 1 

Sclerophyllous vegetation 3 3 3 1 1 1 2 3 1 3 

Transitional woodland-shrub 3 3 1 2 2 2 2 1 1 1 

Beaches, dunes, sands 3 3 3 3 3 3 3 3 3 3 

Bare rocks 3 3 3 2 2 2 3 3 3 3 

Sparsely vegetated areas 3 3 3 3 2 2 2 1 2 3 

Burnt areas 3 3 3 3 3 3 3 3 3 3 

Glaciers and perpetual snow 3 3 3 3 3 3 3 3 3 3 

Inland marshes 1 1 3 3 3 3 3 3 3 3 
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CORINE label 
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Peat bogs 2 3 3 3 3 3 3 3 3 3 

Salt marshes 3 3 3 3 3 3 3 3 3 3 

Salines 3 3 3 3 3 3 3 3 3 3 

Intertidal flats 3 3 3 3 3 3 3 3 3 3 

Water courses 3 3 3 3 3 3 3 3 3 3 

Water bodies 3 3 3 3 3 3 3 3 3 3 

Coastal lagoons 3 3 3 3 3 3 3 3 3 3 

Estuaries 1 2 3 3 3 3 3 3 3 3 

Sea and ocean 3 3 3 3 3 3 3 3 3 3 

Note: 1. Primary habitat = land classes providing most suitable habitat for a species and providing the likelihood of greatest 
vector numbers; 2. Secondary habitat = land classes where a species may still be found but less likely and in much lower 
numbers than above; 3. Unsuitable land = land classes where a species in unlikely to be found except in exceptional 
circumstances. 

Table 4. GLOBCOVER habitat preferences defined by experts for all species  
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Post-flooding or irrigated croplands (or aquatic) 1 1 3 2 3 3 2 3 3 3 

Rainfed croplands 3 3 3 2 3 3 2 3 3 3 

Mosaic cropland (50–70%) / vegetation 
(grassland/shrubland/forest) (20–50%) 

2 2 2 1 1 1 1 3 2 2 

Mosaic vegetation (grassland/shrubland/forest) 
(50–70%) / cropland (20–50%)  

2 2 1 2 1 1 1 1 1 1 

Closed to open (>15%) broad-leaved evergreen 
or semi-deciduous forest (>5m) 

2 3 1 2 2 2 2 1 3 1 

Closed (>40%) broad-leaved deciduous forest 
(>5m) 

2 3 1 2 1 1 2 1 3 1 

Open (15–40%) broad-leaved deciduous 
forest/woodland (>5m) 

3 3 1 2 2 2 2 1 2 1 

Closed (>40%) needle-leaved evergreen forest 
(>5m) 

3 3 2 2 2 2 2 3 2 2 

Open (15–40%) needle-leaved deciduous or 
evergreen forest (>5m) 

2 3 1 2 2 2 2 1 2 2 

Closed to open (>15%) mixed broad-leaved and 
needle-leaved forest (>5m) 

2 3 1 2 2 2 2 1 1 1 
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GLOBCOVER label 
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Mosaic forest or shrubland (50–70%)/grassland 
(20–50%) 

2 2 1 2 2 2 2 3 1 1 

Mosaic grassland (50–70%)/forest or shrubland 
(20–50%)  

2 2 1 2 2 2 2 3 1 1 

Closed to open (>15%) (broad-leaved or needle-
leaved, evergreen or deciduous) shrubland 
(<5m) 

3 3 1 3 2 2 2 3 1 1 

Closed to open (>15%) herbaceous vegetation 
(grassland, savannahs or lichens/mosses) 

2 3 2 3 1 1 2 3 3 3 

Sparse (<15%) vegetation 3 3 3 3 2 2 2 3 2 3 

Closed to open (>15%) broad-leaved forest 
regularly flooded (semi-permanently or 
temporarily) – Fresh or brackish water 

1 2 3 3 3 3 3 3 3 2 

Closed (>40%) broad-leaved forest or shrubland 

permanently flooded – Saline or brackish water 
3 3 3 3 3 3 3 1 3 3 

Closed to open (>15%) grassland or woody 
vegetation on regularly flooded or waterlogged 
soil – Fresh, brackish or saline water 

1 1 3 3 3 3 3 3 3 3 

Artificial surfaces and associated areas (Urban 
areas >50%) 

3 3 3 2 2 2 1 1 3 3 

Bare areas 3 3 3 3 3 3 3 3 3 3 

Water bodies 3 2 3 3 3 3 3 3 3 3 

Permanent snow and ice 3 3 3 3 3 3 3 3 3 3 

No data (burnt areas, clouds,…) 3 3 3 3 3 3 3 3 3 3 

Note: 1. Primary habitat = land classes providing most suitable habitat for a species and providing the likelihood of greatest 
vector numbers; 2. Secondary habitat = land classes where a species may still be found but less likely and in much lower 
numbers than above; 3. Unsuitable land = land classes where a species in unlikely to be found except in exceptional 
circumstances. 
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Annex 2. Environmental limiting factors 

Table 5. Limiting factors applied to habitat suitability masks 

Species Environmental limiting factor 

Phlebotomus ariasi Altitude min <1700 m; BIOCLIM Tmax >15 °C <32 °C 

Phlebotomus papatasi Altitude min <2000 m; BIOCLIM Tmean >20 °C <30 °C 

Anopheles plumbeus Altitude mean <1200 m; precipitation >450 mm annual 

Hyalomma marginatum Altitude min <2000 m 

Ixodes ricinus Snow days <150; vegetation period >145 days 
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